Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,587 +1,201 @@
|
|
1 |
---
|
2 |
base_model: colorfulscoop/sbert-base-ja
|
3 |
-
|
4 |
-
|
5 |
-
-
|
6 |
-
- cosine_accuracy_threshold
|
7 |
-
- cosine_f1
|
8 |
-
- cosine_f1_threshold
|
9 |
-
- cosine_precision
|
10 |
-
- cosine_recall
|
11 |
-
- cosine_ap
|
12 |
-
- dot_accuracy
|
13 |
-
- dot_accuracy_threshold
|
14 |
-
- dot_f1
|
15 |
-
- dot_f1_threshold
|
16 |
-
- dot_precision
|
17 |
-
- dot_recall
|
18 |
-
- dot_ap
|
19 |
-
- manhattan_accuracy
|
20 |
-
- manhattan_accuracy_threshold
|
21 |
-
- manhattan_f1
|
22 |
-
- manhattan_f1_threshold
|
23 |
-
- manhattan_precision
|
24 |
-
- manhattan_recall
|
25 |
-
- manhattan_ap
|
26 |
-
- euclidean_accuracy
|
27 |
-
- euclidean_accuracy_threshold
|
28 |
-
- euclidean_f1
|
29 |
-
- euclidean_f1_threshold
|
30 |
-
- euclidean_precision
|
31 |
-
- euclidean_recall
|
32 |
-
- euclidean_ap
|
33 |
-
- max_accuracy
|
34 |
-
- max_accuracy_threshold
|
35 |
-
- max_f1
|
36 |
-
- max_f1_threshold
|
37 |
-
- max_precision
|
38 |
-
- max_recall
|
39 |
-
- max_ap
|
40 |
-
pipeline_tag: sentence-similarity
|
41 |
-
tags:
|
42 |
-
- sentence-transformers
|
43 |
-
- sentence-similarity
|
44 |
-
- feature-extraction
|
45 |
-
- generated_from_trainer
|
46 |
-
- dataset_size:680
|
47 |
-
- loss:ContrastiveLoss
|
48 |
-
widget:
|
49 |
-
- source_sentence: 両方はだめ?
|
50 |
-
sentences:
|
51 |
-
- 両方欲しい
|
52 |
-
- あほ
|
53 |
-
- キッチンを調べよう
|
54 |
-
- source_sentence: どっちも欲しくない
|
55 |
-
sentences:
|
56 |
-
- 誰かが魔法の呪文で花をぬいぐるみに変えた
|
57 |
-
- 呪文を試すため
|
58 |
-
- 家の中を調べよう
|
59 |
-
- source_sentence: この本は?
|
60 |
-
sentences:
|
61 |
-
- お鍋から匂いがしたから
|
62 |
-
- なんでここに本が?
|
63 |
-
- 両方行きたい
|
64 |
-
- source_sentence: 他のは選べる?
|
65 |
-
sentences:
|
66 |
-
- 昨日夕飯にチキンヌードル食べた?
|
67 |
-
- 別のは選べる?
|
68 |
-
- チキンヌードル作った?
|
69 |
-
- source_sentence: 猫のぬいぐるみ
|
70 |
-
sentences:
|
71 |
-
- 両方はだめ?
|
72 |
-
- ぬいぐるみ
|
73 |
-
- 夜ご飯を食べる前
|
74 |
-
model-index:
|
75 |
-
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
|
76 |
-
results:
|
77 |
-
- task:
|
78 |
-
type: binary-classification
|
79 |
-
name: Binary Classification
|
80 |
-
dataset:
|
81 |
-
name: custom arc semantics data jp
|
82 |
-
type: custom-arc-semantics-data-jp
|
83 |
-
metrics:
|
84 |
-
- type: cosine_accuracy
|
85 |
-
value: 0.8897058823529411
|
86 |
-
name: Cosine Accuracy
|
87 |
-
- type: cosine_accuracy_threshold
|
88 |
-
value: 0.6581918001174927
|
89 |
-
name: Cosine Accuracy Threshold
|
90 |
-
- type: cosine_f1
|
91 |
-
value: 0.9044585987261147
|
92 |
-
name: Cosine F1
|
93 |
-
- type: cosine_f1_threshold
|
94 |
-
value: 0.6180122494697571
|
95 |
-
name: Cosine F1 Threshold
|
96 |
-
- type: cosine_precision
|
97 |
-
value: 0.9466666666666667
|
98 |
-
name: Cosine Precision
|
99 |
-
- type: cosine_recall
|
100 |
-
value: 0.8658536585365854
|
101 |
-
name: Cosine Recall
|
102 |
-
- type: cosine_ap
|
103 |
-
value: 0.9692848872766847
|
104 |
-
name: Cosine Ap
|
105 |
-
- type: dot_accuracy
|
106 |
-
value: 0.8897058823529411
|
107 |
-
name: Dot Accuracy
|
108 |
-
- type: dot_accuracy_threshold
|
109 |
-
value: 374.541748046875
|
110 |
-
name: Dot Accuracy Threshold
|
111 |
-
- type: dot_f1
|
112 |
-
value: 0.9019607843137255
|
113 |
-
name: Dot F1
|
114 |
-
- type: dot_f1_threshold
|
115 |
-
value: 374.541748046875
|
116 |
-
name: Dot F1 Threshold
|
117 |
-
- type: dot_precision
|
118 |
-
value: 0.971830985915493
|
119 |
-
name: Dot Precision
|
120 |
-
- type: dot_recall
|
121 |
-
value: 0.8414634146341463
|
122 |
-
name: Dot Recall
|
123 |
-
- type: dot_ap
|
124 |
-
value: 0.9691104975300342
|
125 |
-
name: Dot Ap
|
126 |
-
- type: manhattan_accuracy
|
127 |
-
value: 0.8970588235294118
|
128 |
-
name: Manhattan Accuracy
|
129 |
-
- type: manhattan_accuracy_threshold
|
130 |
-
value: 453.2839660644531
|
131 |
-
name: Manhattan Accuracy Threshold
|
132 |
-
- type: manhattan_f1
|
133 |
-
value: 0.9102564102564101
|
134 |
-
name: Manhattan F1
|
135 |
-
- type: manhattan_f1_threshold
|
136 |
-
value: 453.2839660644531
|
137 |
-
name: Manhattan F1 Threshold
|
138 |
-
- type: manhattan_precision
|
139 |
-
value: 0.9594594594594594
|
140 |
-
name: Manhattan Precision
|
141 |
-
- type: manhattan_recall
|
142 |
-
value: 0.8658536585365854
|
143 |
-
name: Manhattan Recall
|
144 |
-
- type: manhattan_ap
|
145 |
-
value: 0.9687920395428105
|
146 |
-
name: Manhattan Ap
|
147 |
-
- type: euclidean_accuracy
|
148 |
-
value: 0.8897058823529411
|
149 |
-
name: Euclidean Accuracy
|
150 |
-
- type: euclidean_accuracy_threshold
|
151 |
-
value: 19.75204086303711
|
152 |
-
name: Euclidean Accuracy Threshold
|
153 |
-
- type: euclidean_f1
|
154 |
-
value: 0.9047619047619047
|
155 |
-
name: Euclidean F1
|
156 |
-
- type: euclidean_f1_threshold
|
157 |
-
value: 23.66771125793457
|
158 |
-
name: Euclidean F1 Threshold
|
159 |
-
- type: euclidean_precision
|
160 |
-
value: 0.8837209302325582
|
161 |
-
name: Euclidean Precision
|
162 |
-
- type: euclidean_recall
|
163 |
-
value: 0.926829268292683
|
164 |
-
name: Euclidean Recall
|
165 |
-
- type: euclidean_ap
|
166 |
-
value: 0.9690811253492324
|
167 |
-
name: Euclidean Ap
|
168 |
-
- type: max_accuracy
|
169 |
-
value: 0.8970588235294118
|
170 |
-
name: Max Accuracy
|
171 |
-
- type: max_accuracy_threshold
|
172 |
-
value: 453.2839660644531
|
173 |
-
name: Max Accuracy Threshold
|
174 |
-
- type: max_f1
|
175 |
-
value: 0.9102564102564101
|
176 |
-
name: Max F1
|
177 |
-
- type: max_f1_threshold
|
178 |
-
value: 453.2839660644531
|
179 |
-
name: Max F1 Threshold
|
180 |
-
- type: max_precision
|
181 |
-
value: 0.971830985915493
|
182 |
-
name: Max Precision
|
183 |
-
- type: max_recall
|
184 |
-
value: 0.926829268292683
|
185 |
-
name: Max Recall
|
186 |
-
- type: max_ap
|
187 |
-
value: 0.9692848872766847
|
188 |
-
name: Max Ap
|
189 |
---
|
190 |
|
191 |
-
#
|
|
|
|
|
|
|
192 |
|
193 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
194 |
|
195 |
## Model Details
|
196 |
|
197 |
### Model Description
|
198 |
-
- **Model Type:** Sentence Transformer
|
199 |
-
- **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
|
200 |
-
- **Maximum Sequence Length:** 512 tokens
|
201 |
-
- **Output Dimensionality:** 768 tokens
|
202 |
-
- **Similarity Function:** Cosine Similarity
|
203 |
-
- **Training Dataset:**
|
204 |
-
- csv
|
205 |
-
<!-- - **Language:** Unknown -->
|
206 |
-
<!-- - **License:** Unknown -->
|
207 |
|
208 |
-
|
209 |
|
210 |
-
|
211 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
212 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
213 |
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
|
217 |
-
SentenceTransformer(
|
218 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
219 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
220 |
-
)
|
221 |
-
```
|
222 |
|
223 |
-
|
224 |
|
225 |
-
|
|
|
|
|
226 |
|
227 |
-
|
228 |
|
229 |
-
|
230 |
-
pip install -U sentence-transformers
|
231 |
-
```
|
232 |
|
233 |
-
|
234 |
-
```python
|
235 |
-
from sentence_transformers import SentenceTransformer
|
236 |
|
237 |
-
|
238 |
-
model = SentenceTransformer("sentence_transformers_model_id")
|
239 |
-
# Run inference
|
240 |
-
sentences = [
|
241 |
-
'猫のぬいぐるみ',
|
242 |
-
'ぬいぐるみ',
|
243 |
-
'両方はだめ?',
|
244 |
-
]
|
245 |
-
embeddings = model.encode(sentences)
|
246 |
-
print(embeddings.shape)
|
247 |
-
# [3, 768]
|
248 |
|
249 |
-
|
250 |
-
similarities = model.similarity(embeddings, embeddings)
|
251 |
-
print(similarities.shape)
|
252 |
-
# [3, 3]
|
253 |
-
```
|
254 |
|
255 |
-
|
256 |
-
### Direct Usage (Transformers)
|
257 |
|
258 |
-
|
259 |
|
260 |
-
|
261 |
-
-->
|
262 |
|
263 |
-
|
264 |
-
### Downstream Usage (Sentence Transformers)
|
265 |
|
266 |
-
|
267 |
|
268 |
-
|
269 |
|
270 |
-
|
271 |
-
-->
|
272 |
|
273 |
-
<!--
|
274 |
-
### Out-of-Scope Use
|
275 |
|
276 |
-
|
277 |
-
-->
|
278 |
|
279 |
-
## Evaluation
|
280 |
-
|
281 |
-
### Metrics
|
282 |
-
|
283 |
-
#### Binary Classification
|
284 |
-
* Dataset: `custom-arc-semantics-data-jp`
|
285 |
-
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
286 |
-
|
287 |
-
| Metric | Value |
|
288 |
-
|:-----------------------------|:-----------|
|
289 |
-
| cosine_accuracy | 0.8897 |
|
290 |
-
| cosine_accuracy_threshold | 0.6582 |
|
291 |
-
| cosine_f1 | 0.9045 |
|
292 |
-
| cosine_f1_threshold | 0.618 |
|
293 |
-
| cosine_precision | 0.9467 |
|
294 |
-
| cosine_recall | 0.8659 |
|
295 |
-
| cosine_ap | 0.9693 |
|
296 |
-
| dot_accuracy | 0.8897 |
|
297 |
-
| dot_accuracy_threshold | 374.5417 |
|
298 |
-
| dot_f1 | 0.902 |
|
299 |
-
| dot_f1_threshold | 374.5417 |
|
300 |
-
| dot_precision | 0.9718 |
|
301 |
-
| dot_recall | 0.8415 |
|
302 |
-
| dot_ap | 0.9691 |
|
303 |
-
| manhattan_accuracy | 0.8971 |
|
304 |
-
| manhattan_accuracy_threshold | 453.284 |
|
305 |
-
| manhattan_f1 | 0.9103 |
|
306 |
-
| manhattan_f1_threshold | 453.284 |
|
307 |
-
| manhattan_precision | 0.9595 |
|
308 |
-
| manhattan_recall | 0.8659 |
|
309 |
-
| manhattan_ap | 0.9688 |
|
310 |
-
| euclidean_accuracy | 0.8897 |
|
311 |
-
| euclidean_accuracy_threshold | 19.752 |
|
312 |
-
| euclidean_f1 | 0.9048 |
|
313 |
-
| euclidean_f1_threshold | 23.6677 |
|
314 |
-
| euclidean_precision | 0.8837 |
|
315 |
-
| euclidean_recall | 0.9268 |
|
316 |
-
| euclidean_ap | 0.9691 |
|
317 |
-
| max_accuracy | 0.8971 |
|
318 |
-
| max_accuracy_threshold | 453.284 |
|
319 |
-
| max_f1 | 0.9103 |
|
320 |
-
| max_f1_threshold | 453.284 |
|
321 |
-
| max_precision | 0.9718 |
|
322 |
-
| max_recall | 0.9268 |
|
323 |
-
| **max_ap** | **0.9693** |
|
324 |
-
|
325 |
-
<!--
|
326 |
-
## Bias, Risks and Limitations
|
327 |
-
|
328 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
329 |
-
-->
|
330 |
-
|
331 |
-
<!--
|
332 |
### Recommendations
|
333 |
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
## Training Details
|
338 |
|
339 |
-
### Training
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
-
|
409 |
-
-
|
410 |
-
-
|
411 |
-
-
|
412 |
-
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
- `dataloader_prefetch_factor`: None
|
459 |
-
- `past_index`: -1
|
460 |
-
- `disable_tqdm`: False
|
461 |
-
- `remove_unused_columns`: True
|
462 |
-
- `label_names`: None
|
463 |
-
- `load_best_model_at_end`: False
|
464 |
-
- `ignore_data_skip`: False
|
465 |
-
- `fsdp`: []
|
466 |
-
- `fsdp_min_num_params`: 0
|
467 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
468 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
469 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
470 |
-
- `deepspeed`: None
|
471 |
-
- `label_smoothing_factor`: 0.0
|
472 |
-
- `optim`: adamw_torch
|
473 |
-
- `optim_args`: None
|
474 |
-
- `adafactor`: False
|
475 |
-
- `group_by_length`: False
|
476 |
-
- `length_column_name`: length
|
477 |
-
- `ddp_find_unused_parameters`: None
|
478 |
-
- `ddp_bucket_cap_mb`: None
|
479 |
-
- `ddp_broadcast_buffers`: False
|
480 |
-
- `dataloader_pin_memory`: True
|
481 |
-
- `dataloader_persistent_workers`: False
|
482 |
-
- `skip_memory_metrics`: True
|
483 |
-
- `use_legacy_prediction_loop`: False
|
484 |
-
- `push_to_hub`: False
|
485 |
-
- `resume_from_checkpoint`: None
|
486 |
-
- `hub_model_id`: None
|
487 |
-
- `hub_strategy`: every_save
|
488 |
-
- `hub_private_repo`: False
|
489 |
-
- `hub_always_push`: False
|
490 |
-
- `gradient_checkpointing`: False
|
491 |
-
- `gradient_checkpointing_kwargs`: None
|
492 |
-
- `include_inputs_for_metrics`: False
|
493 |
-
- `eval_do_concat_batches`: True
|
494 |
-
- `fp16_backend`: auto
|
495 |
-
- `push_to_hub_model_id`: None
|
496 |
-
- `push_to_hub_organization`: None
|
497 |
-
- `mp_parameters`:
|
498 |
-
- `auto_find_batch_size`: False
|
499 |
-
- `full_determinism`: False
|
500 |
-
- `torchdynamo`: None
|
501 |
-
- `ray_scope`: last
|
502 |
-
- `ddp_timeout`: 1800
|
503 |
-
- `torch_compile`: False
|
504 |
-
- `torch_compile_backend`: None
|
505 |
-
- `torch_compile_mode`: None
|
506 |
-
- `dispatch_batches`: None
|
507 |
-
- `split_batches`: None
|
508 |
-
- `include_tokens_per_second`: False
|
509 |
-
- `include_num_input_tokens_seen`: False
|
510 |
-
- `neftune_noise_alpha`: None
|
511 |
-
- `optim_target_modules`: None
|
512 |
-
- `batch_eval_metrics`: False
|
513 |
-
- `eval_on_start`: False
|
514 |
-
- `eval_use_gather_object`: False
|
515 |
-
- `batch_sampler`: no_duplicates
|
516 |
-
- `multi_dataset_batch_sampler`: proportional
|
517 |
-
|
518 |
-
</details>
|
519 |
-
|
520 |
-
### Training Logs
|
521 |
-
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
|
522 |
-
|:-----:|:----:|:-------------:|:------:|:-----------------------------------:|
|
523 |
-
| None | 0 | - | - | 0.9118 |
|
524 |
-
| 1.0 | 68 | 0.0481 | 0.0342 | 0.9611 |
|
525 |
-
| 2.0 | 136 | 0.0307 | 0.0318 | 0.9656 |
|
526 |
-
| 3.0 | 204 | 0.0218 | 0.0282 | 0.9728 |
|
527 |
-
| 4.0 | 272 | 0.0169 | 0.0285 | 0.9706 |
|
528 |
-
| 5.0 | 340 | 0.0144 | 0.0289 | 0.9693 |
|
529 |
-
|
530 |
-
|
531 |
-
### Framework Versions
|
532 |
-
- Python: 3.10.14
|
533 |
-
- Sentence Transformers: 3.1.0
|
534 |
-
- Transformers: 4.44.2
|
535 |
-
- PyTorch: 2.4.1+cu121
|
536 |
-
- Accelerate: 0.34.2
|
537 |
-
- Datasets: 2.20.0
|
538 |
-
- Tokenizers: 0.19.1
|
539 |
-
|
540 |
-
## Citation
|
541 |
-
|
542 |
-
### BibTeX
|
543 |
-
|
544 |
-
#### Sentence Transformers
|
545 |
-
```bibtex
|
546 |
-
@inproceedings{reimers-2019-sentence-bert,
|
547 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
548 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
549 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
550 |
-
month = "11",
|
551 |
-
year = "2019",
|
552 |
-
publisher = "Association for Computational Linguistics",
|
553 |
-
url = "https://arxiv.org/abs/1908.10084",
|
554 |
-
}
|
555 |
-
```
|
556 |
-
|
557 |
-
#### ContrastiveLoss
|
558 |
-
```bibtex
|
559 |
-
@inproceedings{hadsell2006dimensionality,
|
560 |
-
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
561 |
-
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
562 |
-
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
563 |
-
year={2006},
|
564 |
-
volume={2},
|
565 |
-
number={},
|
566 |
-
pages={1735-1742},
|
567 |
-
doi={10.1109/CVPR.2006.100}
|
568 |
-
}
|
569 |
-
```
|
570 |
-
|
571 |
-
<!--
|
572 |
-
## Glossary
|
573 |
-
|
574 |
-
*Clearly define terms in order to be accessible across audiences.*
|
575 |
-
-->
|
576 |
-
|
577 |
-
<!--
|
578 |
-
## Model Card Authors
|
579 |
-
|
580 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
581 |
-
-->
|
582 |
-
|
583 |
-
<!--
|
584 |
## Model Card Contact
|
585 |
|
586 |
-
|
587 |
-
-->
|
|
|
1 |
---
|
2 |
base_model: colorfulscoop/sbert-base-ja
|
3 |
+
language: ja
|
4 |
+
license: cc-by-sa-4.0
|
5 |
+
model_name: LeoChiuu/sbert-base-ja-arc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
+
# Model Card for LeoChiuu/sbert-base-ja-arc
|
9 |
+
|
10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
+
|
12 |
|
|
|
13 |
|
14 |
## Model Details
|
15 |
|
16 |
### Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
<!-- Provide a longer summary of what this model is. -->
|
19 |
|
20 |
+
Generates similarity embeddings
|
|
|
|
|
21 |
|
22 |
+
- **Developed by:** [More Information Needed]
|
23 |
+
- **Funded by [optional]:** [More Information Needed]
|
24 |
+
- **Shared by [optional]:** [More Information Needed]
|
25 |
+
- **Model type:** [More Information Needed]
|
26 |
+
- **Language(s) (NLP):** ja
|
27 |
+
- **License:** cc-by-sa-4.0
|
28 |
+
- **Finetuned from model [optional]:** colorfulscoop/sbert-base-ja
|
29 |
|
30 |
+
### Model Sources [optional]
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
<!-- Provide the basic links for the model. -->
|
33 |
|
34 |
+
- **Repository:** [More Information Needed]
|
35 |
+
- **Paper [optional]:** [More Information Needed]
|
36 |
+
- **Demo [optional]:** [More Information Needed]
|
37 |
|
38 |
+
## Uses
|
39 |
|
40 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
|
|
|
|
41 |
|
42 |
+
### Direct Use
|
|
|
|
|
43 |
|
44 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
[More Information Needed]
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
### Downstream Use [optional]
|
|
|
49 |
|
50 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
51 |
|
52 |
+
[More Information Needed]
|
|
|
53 |
|
54 |
+
### Out-of-Scope Use
|
|
|
55 |
|
56 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
57 |
|
58 |
+
[More Information Needed]
|
59 |
|
60 |
+
## Bias, Risks, and Limitations
|
|
|
61 |
|
62 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
|
|
63 |
|
64 |
+
[More Information Needed]
|
|
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
### Recommendations
|
67 |
|
68 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
69 |
+
|
70 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
71 |
+
|
72 |
+
## How to Get Started with the Model
|
73 |
+
|
74 |
+
Use the code below to get started with the model.
|
75 |
+
|
76 |
+
[More Information Needed]
|
77 |
|
78 |
## Training Details
|
79 |
|
80 |
+
### Training Data
|
81 |
+
|
82 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
83 |
+
|
84 |
+
[More Information Needed]
|
85 |
+
|
86 |
+
### Training Procedure
|
87 |
+
|
88 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
89 |
+
|
90 |
+
#### Preprocessing [optional]
|
91 |
+
|
92 |
+
[More Information Needed]
|
93 |
+
|
94 |
+
|
95 |
+
#### Training Hyperparameters
|
96 |
+
|
97 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
98 |
+
|
99 |
+
#### Speeds, Sizes, Times [optional]
|
100 |
+
|
101 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
102 |
+
|
103 |
+
[More Information Needed]
|
104 |
+
|
105 |
+
## Evaluation
|
106 |
+
|
107 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
108 |
+
|
109 |
+
### Testing Data, Factors & Metrics
|
110 |
+
|
111 |
+
#### Testing Data
|
112 |
+
|
113 |
+
<!-- This should link to a Dataset Card if possible. -->
|
114 |
+
|
115 |
+
[More Information Needed]
|
116 |
+
|
117 |
+
#### Factors
|
118 |
+
|
119 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
+
|
121 |
+
[More Information Needed]
|
122 |
+
|
123 |
+
#### Metrics
|
124 |
+
|
125 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
### Results
|
130 |
+
|
131 |
+
[More Information Needed]
|
132 |
+
|
133 |
+
#### Summary
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
## Model Examination [optional]
|
138 |
+
|
139 |
+
<!-- Relevant interpretability work for the model goes here -->
|
140 |
+
|
141 |
+
[More Information Needed]
|
142 |
+
|
143 |
+
## Environmental Impact
|
144 |
+
|
145 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
+
|
147 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
+
|
149 |
+
- **Hardware Type:** [More Information Needed]
|
150 |
+
- **Hours used:** [More Information Needed]
|
151 |
+
- **Cloud Provider:** [More Information Needed]
|
152 |
+
- **Compute Region:** [More Information Needed]
|
153 |
+
- **Carbon Emitted:** [More Information Needed]
|
154 |
+
|
155 |
+
## Technical Specifications [optional]
|
156 |
+
|
157 |
+
### Model Architecture and Objective
|
158 |
+
|
159 |
+
[More Information Needed]
|
160 |
+
|
161 |
+
### Compute Infrastructure
|
162 |
+
|
163 |
+
[More Information Needed]
|
164 |
+
|
165 |
+
#### Hardware
|
166 |
+
|
167 |
+
[More Information Needed]
|
168 |
+
|
169 |
+
#### Software
|
170 |
+
|
171 |
+
[More Information Needed]
|
172 |
+
|
173 |
+
## Citation [optional]
|
174 |
+
|
175 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
+
|
177 |
+
**BibTeX:**
|
178 |
+
|
179 |
+
[More Information Needed]
|
180 |
+
|
181 |
+
**APA:**
|
182 |
+
|
183 |
+
[More Information Needed]
|
184 |
+
|
185 |
+
## Glossary [optional]
|
186 |
+
|
187 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
+
|
189 |
+
[More Information Needed]
|
190 |
+
|
191 |
+
## More Information [optional]
|
192 |
+
|
193 |
+
[More Information Needed]
|
194 |
+
|
195 |
+
## Model Card Authors [optional]
|
196 |
+
|
197 |
+
[More Information Needed]
|
198 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
## Model Card Contact
|
200 |
|
201 |
+
[More Information Needed]
|
|