Add new SentenceTransformer model.
Browse files- README.md +158 -160
- config_sentence_transformers.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
---
|
2 |
base_model: colorfulscoop/sbert-base-ja
|
3 |
-
datasets: []
|
4 |
-
language: []
|
5 |
library_name: sentence-transformers
|
6 |
metrics:
|
7 |
- cosine_accuracy
|
@@ -45,34 +43,34 @@ tags:
|
|
45 |
- sentence-similarity
|
46 |
- feature-extraction
|
47 |
- generated_from_trainer
|
48 |
-
- dataset_size:
|
49 |
-
- loss:
|
50 |
widget:
|
51 |
-
- source_sentence:
|
52 |
sentences:
|
53 |
-
-
|
54 |
-
-
|
55 |
-
-
|
56 |
-
- source_sentence:
|
57 |
sentences:
|
58 |
-
-
|
59 |
-
-
|
60 |
-
-
|
61 |
-
- source_sentence:
|
62 |
sentences:
|
63 |
-
-
|
64 |
-
-
|
65 |
-
-
|
66 |
-
- source_sentence:
|
67 |
sentences:
|
68 |
-
-
|
69 |
-
-
|
70 |
-
-
|
71 |
-
- source_sentence:
|
72 |
sentences:
|
73 |
-
-
|
74 |
-
-
|
75 |
-
-
|
76 |
model-index:
|
77 |
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
|
78 |
results:
|
@@ -80,119 +78,119 @@ model-index:
|
|
80 |
type: binary-classification
|
81 |
name: Binary Classification
|
82 |
dataset:
|
83 |
-
name: custom arc semantics data
|
84 |
-
type: custom-arc-semantics-data
|
85 |
metrics:
|
86 |
- type: cosine_accuracy
|
87 |
-
value: 0.
|
88 |
name: Cosine Accuracy
|
89 |
- type: cosine_accuracy_threshold
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy Threshold
|
92 |
- type: cosine_f1
|
93 |
-
value: 0.
|
94 |
name: Cosine F1
|
95 |
- type: cosine_f1_threshold
|
96 |
-
value: 0.
|
97 |
name: Cosine F1 Threshold
|
98 |
- type: cosine_precision
|
99 |
-
value:
|
100 |
name: Cosine Precision
|
101 |
- type: cosine_recall
|
102 |
-
value: 0.
|
103 |
name: Cosine Recall
|
104 |
- type: cosine_ap
|
105 |
-
value:
|
106 |
name: Cosine Ap
|
107 |
- type: dot_accuracy
|
108 |
-
value: 0.
|
109 |
name: Dot Accuracy
|
110 |
- type: dot_accuracy_threshold
|
111 |
-
value:
|
112 |
name: Dot Accuracy Threshold
|
113 |
- type: dot_f1
|
114 |
-
value: 0.
|
115 |
name: Dot F1
|
116 |
- type: dot_f1_threshold
|
117 |
-
value:
|
118 |
name: Dot F1 Threshold
|
119 |
- type: dot_precision
|
120 |
-
value:
|
121 |
name: Dot Precision
|
122 |
- type: dot_recall
|
123 |
-
value: 0.
|
124 |
name: Dot Recall
|
125 |
- type: dot_ap
|
126 |
-
value:
|
127 |
name: Dot Ap
|
128 |
- type: manhattan_accuracy
|
129 |
-
value: 0.
|
130 |
name: Manhattan Accuracy
|
131 |
- type: manhattan_accuracy_threshold
|
132 |
-
value:
|
133 |
name: Manhattan Accuracy Threshold
|
134 |
- type: manhattan_f1
|
135 |
-
value: 0.
|
136 |
name: Manhattan F1
|
137 |
- type: manhattan_f1_threshold
|
138 |
-
value:
|
139 |
name: Manhattan F1 Threshold
|
140 |
- type: manhattan_precision
|
141 |
-
value:
|
142 |
name: Manhattan Precision
|
143 |
- type: manhattan_recall
|
144 |
-
value: 0.
|
145 |
name: Manhattan Recall
|
146 |
- type: manhattan_ap
|
147 |
-
value:
|
148 |
name: Manhattan Ap
|
149 |
- type: euclidean_accuracy
|
150 |
-
value: 0.
|
151 |
name: Euclidean Accuracy
|
152 |
- type: euclidean_accuracy_threshold
|
153 |
-
value:
|
154 |
name: Euclidean Accuracy Threshold
|
155 |
- type: euclidean_f1
|
156 |
-
value: 0.
|
157 |
name: Euclidean F1
|
158 |
- type: euclidean_f1_threshold
|
159 |
-
value:
|
160 |
name: Euclidean F1 Threshold
|
161 |
- type: euclidean_precision
|
162 |
-
value:
|
163 |
name: Euclidean Precision
|
164 |
- type: euclidean_recall
|
165 |
-
value: 0.
|
166 |
name: Euclidean Recall
|
167 |
- type: euclidean_ap
|
168 |
-
value:
|
169 |
name: Euclidean Ap
|
170 |
- type: max_accuracy
|
171 |
-
value: 0.
|
172 |
name: Max Accuracy
|
173 |
- type: max_accuracy_threshold
|
174 |
-
value:
|
175 |
name: Max Accuracy Threshold
|
176 |
- type: max_f1
|
177 |
-
value: 0.
|
178 |
name: Max F1
|
179 |
- type: max_f1_threshold
|
180 |
-
value:
|
181 |
name: Max F1 Threshold
|
182 |
- type: max_precision
|
183 |
-
value:
|
184 |
name: Max Precision
|
185 |
- type: max_recall
|
186 |
-
value: 0.
|
187 |
name: Max Recall
|
188 |
- type: max_ap
|
189 |
-
value:
|
190 |
name: Max Ap
|
191 |
---
|
192 |
|
193 |
# SentenceTransformer based on colorfulscoop/sbert-base-ja
|
194 |
|
195 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
196 |
|
197 |
## Model Details
|
198 |
|
@@ -202,7 +200,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [c
|
|
202 |
- **Maximum Sequence Length:** 512 tokens
|
203 |
- **Output Dimensionality:** 768 tokens
|
204 |
- **Similarity Function:** Cosine Similarity
|
205 |
-
|
|
|
206 |
<!-- - **Language:** Unknown -->
|
207 |
<!-- - **License:** Unknown -->
|
208 |
|
@@ -239,9 +238,9 @@ from sentence_transformers import SentenceTransformer
|
|
239 |
model = SentenceTransformer("LeoChiuu/sbert-base-ja-arc")
|
240 |
# Run inference
|
241 |
sentences = [
|
242 |
-
'
|
243 |
-
'
|
244 |
-
'
|
245 |
]
|
246 |
embeddings = model.encode(sentences)
|
247 |
print(embeddings.shape)
|
@@ -282,46 +281,46 @@ You can finetune this model on your own dataset.
|
|
282 |
### Metrics
|
283 |
|
284 |
#### Binary Classification
|
285 |
-
* Dataset: `custom-arc-semantics-data`
|
286 |
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
287 |
|
288 |
-
| Metric | Value
|
289 |
-
|
290 |
-
| cosine_accuracy | 0.
|
291 |
-
| cosine_accuracy_threshold | 0.
|
292 |
-
| cosine_f1 | 0.
|
293 |
-
| cosine_f1_threshold | 0.
|
294 |
-
| cosine_precision |
|
295 |
-
| cosine_recall | 0.
|
296 |
-
| cosine_ap |
|
297 |
-
| dot_accuracy | 0.
|
298 |
-
| dot_accuracy_threshold |
|
299 |
-
| dot_f1 | 0.
|
300 |
-
| dot_f1_threshold |
|
301 |
-
| dot_precision |
|
302 |
-
| dot_recall | 0.
|
303 |
-
| dot_ap |
|
304 |
-
| manhattan_accuracy | 0.
|
305 |
-
| manhattan_accuracy_threshold |
|
306 |
-
| manhattan_f1 | 0.
|
307 |
-
| manhattan_f1_threshold |
|
308 |
-
| manhattan_precision |
|
309 |
-
| manhattan_recall | 0.
|
310 |
-
| manhattan_ap |
|
311 |
-
| euclidean_accuracy | 0.
|
312 |
-
| euclidean_accuracy_threshold |
|
313 |
-
| euclidean_f1 | 0.
|
314 |
-
| euclidean_f1_threshold |
|
315 |
-
| euclidean_precision |
|
316 |
-
| euclidean_recall | 0.
|
317 |
-
| euclidean_ap |
|
318 |
-
| max_accuracy | 0.
|
319 |
-
| max_accuracy_threshold |
|
320 |
-
| max_f1 | 0.
|
321 |
-
| max_f1_threshold |
|
322 |
-
| max_precision |
|
323 |
-
| max_recall | 0.
|
324 |
-
| **max_ap** | **
|
325 |
|
326 |
<!--
|
327 |
## Bias, Risks and Limitations
|
@@ -339,53 +338,53 @@ You can finetune this model on your own dataset.
|
|
339 |
|
340 |
### Training Dataset
|
341 |
|
342 |
-
####
|
343 |
|
344 |
-
|
345 |
-
* Size:
|
346 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
347 |
-
* Approximate statistics based on the first
|
348 |
-
| | text1 | text2 | label
|
349 |
-
|
350 |
-
| type | string | string | int
|
351 |
-
| details | <ul><li>min: 4 tokens</li><li>mean:
|
352 |
* Samples:
|
353 |
-
| text1
|
354 |
-
|
355 |
-
| <code
|
356 |
-
| <code
|
357 |
-
| <code
|
358 |
-
* Loss: [<code>
|
359 |
```json
|
360 |
{
|
361 |
"scale": 20.0,
|
362 |
-
"similarity_fct": "
|
363 |
}
|
364 |
```
|
365 |
|
366 |
### Evaluation Dataset
|
367 |
|
368 |
-
####
|
369 |
-
|
370 |
|
371 |
-
*
|
|
|
372 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
373 |
-
* Approximate statistics based on the first
|
374 |
-
| | text1 | text2 | label
|
375 |
-
|
376 |
-
| type | string | string | int
|
377 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 8.
|
378 |
* Samples:
|
379 |
-
| text1
|
380 |
-
|
381 |
-
| <code
|
382 |
-
| <code
|
383 |
-
| <code
|
384 |
-
* Loss: [<code>
|
385 |
```json
|
386 |
{
|
387 |
"scale": 20.0,
|
388 |
-
"similarity_fct": "
|
389 |
}
|
390 |
```
|
391 |
|
@@ -517,30 +516,30 @@ You can finetune this model on your own dataset.
|
|
517 |
</details>
|
518 |
|
519 |
### Training Logs
|
520 |
-
| Epoch
|
521 |
-
|
522 |
-
| None
|
523 |
-
| 1.
|
524 |
-
| 2.
|
525 |
-
| 3.
|
526 |
-
| 4.
|
527 |
-
| 5.
|
528 |
-
| 6.
|
529 |
-
| 7.
|
530 |
-
| 8.
|
531 |
-
| 9.
|
532 |
-
| 10.
|
533 |
-
| 11.
|
534 |
-
| 12.
|
535 |
-
|
|
536 |
|
537 |
|
538 |
### Framework Versions
|
539 |
- Python: 3.10.14
|
540 |
-
- Sentence Transformers: 3.0
|
541 |
- Transformers: 4.44.2
|
542 |
- PyTorch: 2.4.1+cu121
|
543 |
-
- Accelerate: 0.34.
|
544 |
- Datasets: 2.20.0
|
545 |
- Tokenizers: 0.19.1
|
546 |
|
@@ -561,15 +560,14 @@ You can finetune this model on your own dataset.
|
|
561 |
}
|
562 |
```
|
563 |
|
564 |
-
####
|
565 |
```bibtex
|
566 |
-
@
|
567 |
-
title={
|
568 |
-
author={
|
569 |
-
year={
|
570 |
-
|
571 |
-
|
572 |
-
primaryClass={cs.CL}
|
573 |
}
|
574 |
```
|
575 |
|
|
|
1 |
---
|
2 |
base_model: colorfulscoop/sbert-base-ja
|
|
|
|
|
3 |
library_name: sentence-transformers
|
4 |
metrics:
|
5 |
- cosine_accuracy
|
|
|
43 |
- sentence-similarity
|
44 |
- feature-extraction
|
45 |
- generated_from_trainer
|
46 |
+
- dataset_size:601
|
47 |
+
- loss:CoSENTLoss
|
48 |
widget:
|
49 |
+
- source_sentence: だれかが魔法で花をぬいぐるみに変えた
|
50 |
sentences:
|
51 |
+
- 誰かが魔法の呪文で花をぬいぐるみに変えた
|
52 |
+
- 村長は誰?
|
53 |
+
- どこ?
|
54 |
+
- source_sentence: 暖炉にスカーフを置いた?
|
55 |
sentences:
|
56 |
+
- 魔法をかけられる人
|
57 |
+
- ロウソク
|
58 |
+
- 晩ご飯のとき
|
59 |
+
- source_sentence: あほ
|
60 |
sentences:
|
61 |
+
- 調子はどう?
|
62 |
+
- きらい
|
63 |
+
- オッケー
|
64 |
+
- source_sentence: 猫のぬいぐるみ
|
65 |
sentences:
|
66 |
+
- 赤い染みが皿にあった
|
67 |
+
- 好きじゃないの?
|
68 |
+
- ぬいぐるみ
|
69 |
+
- source_sentence: リリアンはどんな呪文が使えるの?
|
70 |
sentences:
|
71 |
+
- あなたは魔法使い?
|
72 |
+
- 姿かたちを変える魔法
|
73 |
+
- どのくらいのサイズ?
|
74 |
model-index:
|
75 |
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
|
76 |
results:
|
|
|
78 |
type: binary-classification
|
79 |
name: Binary Classification
|
80 |
dataset:
|
81 |
+
name: custom arc semantics data jp
|
82 |
+
type: custom-arc-semantics-data-jp
|
83 |
metrics:
|
84 |
- type: cosine_accuracy
|
85 |
+
value: 0.9090909090909091
|
86 |
name: Cosine Accuracy
|
87 |
- type: cosine_accuracy_threshold
|
88 |
+
value: 0.4785935878753662
|
89 |
name: Cosine Accuracy Threshold
|
90 |
- type: cosine_f1
|
91 |
+
value: 0.9341317365269461
|
92 |
name: Cosine F1
|
93 |
- type: cosine_f1_threshold
|
94 |
+
value: 0.4785935878753662
|
95 |
name: Cosine F1 Threshold
|
96 |
- type: cosine_precision
|
97 |
+
value: 0.9176470588235294
|
98 |
name: Cosine Precision
|
99 |
- type: cosine_recall
|
100 |
+
value: 0.9512195121951219
|
101 |
name: Cosine Recall
|
102 |
- type: cosine_ap
|
103 |
+
value: 0.9287829842425579
|
104 |
name: Cosine Ap
|
105 |
- type: dot_accuracy
|
106 |
+
value: 0.9008264462809917
|
107 |
name: Dot Accuracy
|
108 |
- type: dot_accuracy_threshold
|
109 |
+
value: 234.1079864501953
|
110 |
name: Dot Accuracy Threshold
|
111 |
- type: dot_f1
|
112 |
+
value: 0.9302325581395349
|
113 |
name: Dot F1
|
114 |
- type: dot_f1_threshold
|
115 |
+
value: 209.4735870361328
|
116 |
name: Dot F1 Threshold
|
117 |
- type: dot_precision
|
118 |
+
value: 0.8888888888888888
|
119 |
name: Dot Precision
|
120 |
- type: dot_recall
|
121 |
+
value: 0.975609756097561
|
122 |
name: Dot Recall
|
123 |
- type: dot_ap
|
124 |
+
value: 0.9635932205663708
|
125 |
name: Dot Ap
|
126 |
- type: manhattan_accuracy
|
127 |
+
value: 0.9008264462809917
|
128 |
name: Manhattan Accuracy
|
129 |
- type: manhattan_accuracy_threshold
|
130 |
+
value: 558.378173828125
|
131 |
name: Manhattan Accuracy Threshold
|
132 |
- type: manhattan_f1
|
133 |
+
value: 0.9302325581395349
|
134 |
name: Manhattan F1
|
135 |
- type: manhattan_f1_threshold
|
136 |
+
value: 580.81640625
|
137 |
name: Manhattan F1 Threshold
|
138 |
- type: manhattan_precision
|
139 |
+
value: 0.8888888888888888
|
140 |
name: Manhattan Precision
|
141 |
- type: manhattan_recall
|
142 |
+
value: 0.975609756097561
|
143 |
name: Manhattan Recall
|
144 |
- type: manhattan_ap
|
145 |
+
value: 0.92846470083454
|
146 |
name: Manhattan Ap
|
147 |
- type: euclidean_accuracy
|
148 |
+
value: 0.9090909090909091
|
149 |
name: Euclidean Accuracy
|
150 |
- type: euclidean_accuracy_threshold
|
151 |
+
value: 24.130870819091797
|
152 |
name: Euclidean Accuracy Threshold
|
153 |
- type: euclidean_f1
|
154 |
+
value: 0.9341317365269461
|
155 |
name: Euclidean F1
|
156 |
- type: euclidean_f1_threshold
|
157 |
+
value: 24.130870819091797
|
158 |
name: Euclidean F1 Threshold
|
159 |
- type: euclidean_precision
|
160 |
+
value: 0.9176470588235294
|
161 |
name: Euclidean Precision
|
162 |
- type: euclidean_recall
|
163 |
+
value: 0.9512195121951219
|
164 |
name: Euclidean Recall
|
165 |
- type: euclidean_ap
|
166 |
+
value: 0.9287963056027329
|
167 |
name: Euclidean Ap
|
168 |
- type: max_accuracy
|
169 |
+
value: 0.9090909090909091
|
170 |
name: Max Accuracy
|
171 |
- type: max_accuracy_threshold
|
172 |
+
value: 558.378173828125
|
173 |
name: Max Accuracy Threshold
|
174 |
- type: max_f1
|
175 |
+
value: 0.9341317365269461
|
176 |
name: Max F1
|
177 |
- type: max_f1_threshold
|
178 |
+
value: 580.81640625
|
179 |
name: Max F1 Threshold
|
180 |
- type: max_precision
|
181 |
+
value: 0.9176470588235294
|
182 |
name: Max Precision
|
183 |
- type: max_recall
|
184 |
+
value: 0.975609756097561
|
185 |
name: Max Recall
|
186 |
- type: max_ap
|
187 |
+
value: 0.9635932205663708
|
188 |
name: Max Ap
|
189 |
---
|
190 |
|
191 |
# SentenceTransformer based on colorfulscoop/sbert-base-ja
|
192 |
|
193 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
194 |
|
195 |
## Model Details
|
196 |
|
|
|
200 |
- **Maximum Sequence Length:** 512 tokens
|
201 |
- **Output Dimensionality:** 768 tokens
|
202 |
- **Similarity Function:** Cosine Similarity
|
203 |
+
- **Training Dataset:**
|
204 |
+
- csv
|
205 |
<!-- - **Language:** Unknown -->
|
206 |
<!-- - **License:** Unknown -->
|
207 |
|
|
|
238 |
model = SentenceTransformer("LeoChiuu/sbert-base-ja-arc")
|
239 |
# Run inference
|
240 |
sentences = [
|
241 |
+
'リリアンはどんな呪文が使えるの?',
|
242 |
+
'姿かたちを変える魔法',
|
243 |
+
'どのくらいのサイズ?',
|
244 |
]
|
245 |
embeddings = model.encode(sentences)
|
246 |
print(embeddings.shape)
|
|
|
281 |
### Metrics
|
282 |
|
283 |
#### Binary Classification
|
284 |
+
* Dataset: `custom-arc-semantics-data-jp`
|
285 |
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
286 |
|
287 |
+
| Metric | Value |
|
288 |
+
|:-----------------------------|:-----------|
|
289 |
+
| cosine_accuracy | 0.9091 |
|
290 |
+
| cosine_accuracy_threshold | 0.4786 |
|
291 |
+
| cosine_f1 | 0.9341 |
|
292 |
+
| cosine_f1_threshold | 0.4786 |
|
293 |
+
| cosine_precision | 0.9176 |
|
294 |
+
| cosine_recall | 0.9512 |
|
295 |
+
| cosine_ap | 0.9288 |
|
296 |
+
| dot_accuracy | 0.9008 |
|
297 |
+
| dot_accuracy_threshold | 234.108 |
|
298 |
+
| dot_f1 | 0.9302 |
|
299 |
+
| dot_f1_threshold | 209.4736 |
|
300 |
+
| dot_precision | 0.8889 |
|
301 |
+
| dot_recall | 0.9756 |
|
302 |
+
| dot_ap | 0.9636 |
|
303 |
+
| manhattan_accuracy | 0.9008 |
|
304 |
+
| manhattan_accuracy_threshold | 558.3782 |
|
305 |
+
| manhattan_f1 | 0.9302 |
|
306 |
+
| manhattan_f1_threshold | 580.8164 |
|
307 |
+
| manhattan_precision | 0.8889 |
|
308 |
+
| manhattan_recall | 0.9756 |
|
309 |
+
| manhattan_ap | 0.9285 |
|
310 |
+
| euclidean_accuracy | 0.9091 |
|
311 |
+
| euclidean_accuracy_threshold | 24.1309 |
|
312 |
+
| euclidean_f1 | 0.9341 |
|
313 |
+
| euclidean_f1_threshold | 24.1309 |
|
314 |
+
| euclidean_precision | 0.9176 |
|
315 |
+
| euclidean_recall | 0.9512 |
|
316 |
+
| euclidean_ap | 0.9288 |
|
317 |
+
| max_accuracy | 0.9091 |
|
318 |
+
| max_accuracy_threshold | 558.3782 |
|
319 |
+
| max_f1 | 0.9341 |
|
320 |
+
| max_f1_threshold | 580.8164 |
|
321 |
+
| max_precision | 0.9176 |
|
322 |
+
| max_recall | 0.9756 |
|
323 |
+
| **max_ap** | **0.9636** |
|
324 |
|
325 |
<!--
|
326 |
## Bias, Risks and Limitations
|
|
|
338 |
|
339 |
### Training Dataset
|
340 |
|
341 |
+
#### csv
|
342 |
|
343 |
+
* Dataset: csv
|
344 |
+
* Size: 601 training samples
|
345 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
346 |
+
* Approximate statistics based on the first 601 samples:
|
347 |
+
| | text1 | text2 | label |
|
348 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
349 |
+
| type | string | string | int |
|
350 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 7.99 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.05 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>0: ~33.96%</li><li>1: ~66.04%</li></ul> |
|
351 |
* Samples:
|
352 |
+
| text1 | text2 | label |
|
353 |
+
|:------------------------|:----------------------|:---------------|
|
354 |
+
| <code>どっちがいいと思う?</code> | <code>どっちが欲しい?</code> | <code>1</code> |
|
355 |
+
| <code>かわいいね</code> | <code>ばか</code> | <code>0</code> |
|
356 |
+
| <code>別のは選べないの?</code> | <code>なにが欲しい?</code> | <code>0</code> |
|
357 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
358 |
```json
|
359 |
{
|
360 |
"scale": 20.0,
|
361 |
+
"similarity_fct": "pairwise_cos_sim"
|
362 |
}
|
363 |
```
|
364 |
|
365 |
### Evaluation Dataset
|
366 |
|
367 |
+
#### csv
|
|
|
368 |
|
369 |
+
* Dataset: csv
|
370 |
+
* Size: 601 evaluation samples
|
371 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
372 |
+
* Approximate statistics based on the first 601 samples:
|
373 |
+
| | text1 | text2 | label |
|
374 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
375 |
+
| type | string | string | int |
|
376 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.26 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.94 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>0: ~32.23%</li><li>1: ~67.77%</li></ul> |
|
377 |
* Samples:
|
378 |
+
| text1 | text2 | label |
|
379 |
+
|:-----------------------|:------------------------|:---------------|
|
380 |
+
| <code>誰かが魔法を使った</code> | <code>誰かがが魔法をかけた</code> | <code>1</code> |
|
381 |
+
| <code>これが花</code> | <code>ぬいぐるみが花</code> | <code>1</code> |
|
382 |
+
| <code>夜ご飯を作る前</code> | <code>夜ご飯を食べる前</code> | <code>1</code> |
|
383 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
384 |
```json
|
385 |
{
|
386 |
"scale": 20.0,
|
387 |
+
"similarity_fct": "pairwise_cos_sim"
|
388 |
}
|
389 |
```
|
390 |
|
|
|
516 |
</details>
|
517 |
|
518 |
### Training Logs
|
519 |
+
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
|
520 |
+
|:-------:|:----:|:-------------:|:------:|:-----------------------------------:|
|
521 |
+
| None | 0 | - | - | 0.8596 |
|
522 |
+
| 1.0167 | 61 | 2.775 | 2.0852 | 0.8927 |
|
523 |
+
| 2.0167 | 122 | 1.213 | 1.7433 | 0.9291 |
|
524 |
+
| 3.0167 | 183 | 0.5703 | 1.5724 | 0.9379 |
|
525 |
+
| 4.0167 | 244 | 0.4603 | 1.6239 | 0.9432 |
|
526 |
+
| 5.0167 | 305 | 0.3672 | 1.6444 | 0.9523 |
|
527 |
+
| 6.0167 | 366 | 0.2947 | 1.6222 | 0.9603 |
|
528 |
+
| 7.0167 | 427 | 0.2255 | 1.7302 | 0.9619 |
|
529 |
+
| 8.0167 | 488 | 0.1678 | 1.7360 | 0.9633 |
|
530 |
+
| 9.0167 | 549 | 0.1163 | 1.8029 | 0.9620 |
|
531 |
+
| 10.0167 | 610 | 0.0706 | 1.8986 | 0.9639 |
|
532 |
+
| 11.0167 | 671 | 0.0389 | 1.9671 | 0.9624 |
|
533 |
+
| 12.0167 | 732 | 0.0333 | 2.0375 | 0.9636 |
|
534 |
+
| 12.8 | 780 | 0.0618 | 1.9938 | 0.9636 |
|
535 |
|
536 |
|
537 |
### Framework Versions
|
538 |
- Python: 3.10.14
|
539 |
+
- Sentence Transformers: 3.1.0
|
540 |
- Transformers: 4.44.2
|
541 |
- PyTorch: 2.4.1+cu121
|
542 |
+
- Accelerate: 0.34.2
|
543 |
- Datasets: 2.20.0
|
544 |
- Tokenizers: 0.19.1
|
545 |
|
|
|
560 |
}
|
561 |
```
|
562 |
|
563 |
+
#### CoSENTLoss
|
564 |
```bibtex
|
565 |
+
@online{kexuefm-8847,
|
566 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
567 |
+
author={Su Jianlin},
|
568 |
+
year={2022},
|
569 |
+
month={Jan},
|
570 |
+
url={https://kexue.fm/archives/8847},
|
|
|
571 |
}
|
572 |
```
|
573 |
|
config_sentence_transformers.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "3.0
|
4 |
"transformers": "4.44.2",
|
5 |
"pytorch": "2.4.1+cu121"
|
6 |
},
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
"transformers": "4.44.2",
|
5 |
"pytorch": "2.4.1+cu121"
|
6 |
},
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 442491744
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0900bde2010bc7e2818d70b31e4bbe7106bdb90d812cf99c8f8921b69fb1d8f2
|
3 |
size 442491744
|