LeoChiuu commited on
Commit
d86680b
·
verified ·
1 Parent(s): 628261c

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +109 -86
  2. model.safetensors +1 -1
README.md CHANGED
@@ -46,7 +46,7 @@ tags:
46
  - feature-extraction
47
  - generated_from_trainer
48
  - dataset_size:356
49
- - loss:OnlineContrastiveLoss
50
  widget:
51
  - source_sentence: これって?
52
  sentences:
@@ -84,109 +84,109 @@ model-index:
84
  type: custom-arc-semantics-data
85
  metrics:
86
  - type: cosine_accuracy
87
- value: 0.9213483146067416
88
  name: Cosine Accuracy
89
  - type: cosine_accuracy_threshold
90
- value: 0.9257684946060181
91
  name: Cosine Accuracy Threshold
92
  - type: cosine_f1
93
- value: 0.9380530973451328
94
  name: Cosine F1
95
  - type: cosine_f1_threshold
96
- value: 0.9257684946060181
97
  name: Cosine F1 Threshold
98
  - type: cosine_precision
99
- value: 0.9814814814814815
100
  name: Cosine Precision
101
  - type: cosine_recall
102
- value: 0.8983050847457628
103
  name: Cosine Recall
104
  - type: cosine_ap
105
- value: 0.9831776961455067
106
  name: Cosine Ap
107
  - type: dot_accuracy
108
- value: 0.898876404494382
109
  name: Dot Accuracy
110
  - type: dot_accuracy_threshold
111
- value: 549.65966796875
112
  name: Dot Accuracy Threshold
113
  - type: dot_f1
114
- value: 0.9279999999999999
115
  name: Dot F1
116
  - type: dot_f1_threshold
117
- value: 536.9278564453125
118
  name: Dot F1 Threshold
119
  - type: dot_precision
120
- value: 0.8787878787878788
121
  name: Dot Precision
122
  - type: dot_recall
123
- value: 0.9830508474576272
124
  name: Dot Recall
125
  - type: dot_ap
126
- value: 0.9799216592268227
127
  name: Dot Ap
128
  - type: manhattan_accuracy
129
- value: 0.9213483146067416
130
  name: Manhattan Accuracy
131
  - type: manhattan_accuracy_threshold
132
- value: 212.17135620117188
133
  name: Manhattan Accuracy Threshold
134
  - type: manhattan_f1
135
- value: 0.9380530973451328
136
  name: Manhattan F1
137
  - type: manhattan_f1_threshold
138
- value: 212.17135620117188
139
  name: Manhattan F1 Threshold
140
  - type: manhattan_precision
141
- value: 0.9814814814814815
142
  name: Manhattan Precision
143
  - type: manhattan_recall
144
- value: 0.8983050847457628
145
  name: Manhattan Recall
146
  - type: manhattan_ap
147
- value: 0.9831776961455067
148
  name: Manhattan Ap
149
  - type: euclidean_accuracy
150
- value: 0.9213483146067416
151
  name: Euclidean Accuracy
152
  - type: euclidean_accuracy_threshold
153
- value: 9.646502494812012
154
  name: Euclidean Accuracy Threshold
155
  - type: euclidean_f1
156
- value: 0.9380530973451328
157
  name: Euclidean F1
158
  - type: euclidean_f1_threshold
159
- value: 9.646502494812012
160
  name: Euclidean F1 Threshold
161
  - type: euclidean_precision
162
- value: 0.9814814814814815
163
  name: Euclidean Precision
164
  - type: euclidean_recall
165
- value: 0.8983050847457628
166
  name: Euclidean Recall
167
  - type: euclidean_ap
168
- value: 0.9831776961455067
169
  name: Euclidean Ap
170
  - type: max_accuracy
171
- value: 0.9213483146067416
172
  name: Max Accuracy
173
  - type: max_accuracy_threshold
174
- value: 549.65966796875
175
  name: Max Accuracy Threshold
176
  - type: max_f1
177
- value: 0.9380530973451328
178
  name: Max F1
179
  - type: max_f1_threshold
180
- value: 536.9278564453125
181
  name: Max F1 Threshold
182
  - type: max_precision
183
- value: 0.9814814814814815
184
  name: Max Precision
185
  - type: max_recall
186
- value: 0.9830508474576272
187
  name: Max Recall
188
  - type: max_ap
189
- value: 0.9831776961455067
190
  name: Max Ap
191
  ---
192
 
@@ -287,41 +287,41 @@ You can finetune this model on your own dataset.
287
 
288
  | Metric | Value |
289
  |:-----------------------------|:-----------|
290
- | cosine_accuracy | 0.9213 |
291
- | cosine_accuracy_threshold | 0.9258 |
292
- | cosine_f1 | 0.9381 |
293
- | cosine_f1_threshold | 0.9258 |
294
- | cosine_precision | 0.9815 |
295
- | cosine_recall | 0.8983 |
296
- | cosine_ap | 0.9832 |
297
- | dot_accuracy | 0.8989 |
298
- | dot_accuracy_threshold | 549.6597 |
299
- | dot_f1 | 0.928 |
300
- | dot_f1_threshold | 536.9279 |
301
- | dot_precision | 0.8788 |
302
- | dot_recall | 0.9831 |
303
- | dot_ap | 0.9799 |
304
- | manhattan_accuracy | 0.9213 |
305
- | manhattan_accuracy_threshold | 212.1714 |
306
- | manhattan_f1 | 0.9381 |
307
- | manhattan_f1_threshold | 212.1714 |
308
- | manhattan_precision | 0.9815 |
309
- | manhattan_recall | 0.8983 |
310
- | manhattan_ap | 0.9832 |
311
- | euclidean_accuracy | 0.9213 |
312
- | euclidean_accuracy_threshold | 9.6465 |
313
- | euclidean_f1 | 0.9381 |
314
- | euclidean_f1_threshold | 9.6465 |
315
- | euclidean_precision | 0.9815 |
316
- | euclidean_recall | 0.8983 |
317
- | euclidean_ap | 0.9832 |
318
- | max_accuracy | 0.9213 |
319
- | max_accuracy_threshold | 549.6597 |
320
- | max_f1 | 0.9381 |
321
- | max_f1_threshold | 536.9279 |
322
- | max_precision | 0.9815 |
323
- | max_recall | 0.9831 |
324
- | **max_ap** | **0.9832** |
325
 
326
  <!--
327
  ## Bias, Risks and Limitations
@@ -355,7 +355,13 @@ You can finetune this model on your own dataset.
355
  | <code>ジャックはどんな魔法を使うの?</code> | <code>見た目を変える魔法</code> | <code>0</code> |
356
  | <code>魔法使い</code> | <code>魔法をかけられる人</code> | <code>1</code> |
357
  | <code>ぬいぐるみが花</code> | <code>花がぬいぐるみに変えられている</code> | <code>1</code> |
358
- * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
 
 
 
 
 
 
359
 
360
  ### Evaluation Dataset
361
 
@@ -375,7 +381,13 @@ You can finetune this model on your own dataset.
375
  | <code>トーチ</code> | <code>なにも要らない</code> | <code>0</code> |
376
  | <code>家の外</code> | <code>家の外へ行こう</code> | <code>1</code> |
377
  | <code>お皿に赤い染みがついていたから</code> | <code>棚からトマトがなくなってたから</code> | <code>0</code> |
378
- * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
 
 
 
 
 
 
379
 
380
  ### Training Hyperparameters
381
  #### Non-Default Hyperparameters
@@ -508,19 +520,19 @@ You can finetune this model on your own dataset.
508
  | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
509
  |:-----:|:----:|:-------------:|:------:|:--------------------------------:|
510
  | None | 0 | - | - | 0.9511 |
511
- | 1.0 | 45 | 0.2266 | 0.1131 | 0.9630 |
512
- | 2.0 | 90 | 0.0847 | 0.1191 | 0.9745 |
513
- | 3.0 | 135 | 0.0227 | 0.0873 | 0.9817 |
514
- | 4.0 | 180 | 0.0144 | 0.0887 | 0.9843 |
515
- | 5.0 | 225 | 0.006 | 0.0750 | 0.9845 |
516
- | 6.0 | 270 | 0.0016 | 0.0920 | 0.9842 |
517
- | 7.0 | 315 | 0.0009 | 0.0943 | 0.9837 |
518
- | 8.0 | 360 | 0.0044 | 0.0790 | 0.9852 |
519
- | 9.0 | 405 | 0.0046 | 0.0772 | 0.9856 |
520
- | 10.0 | 450 | 0.005 | 0.0766 | 0.9848 |
521
- | 11.0 | 495 | 0.0008 | 0.0766 | 0.9835 |
522
- | 12.0 | 540 | 0.0046 | 0.0767 | 0.9835 |
523
- | 13.0 | 585 | 0.0008 | 0.0770 | 0.9832 |
524
 
525
 
526
  ### Framework Versions
@@ -549,6 +561,17 @@ You can finetune this model on your own dataset.
549
  }
550
  ```
551
 
 
 
 
 
 
 
 
 
 
 
 
552
  <!--
553
  ## Glossary
554
 
 
46
  - feature-extraction
47
  - generated_from_trainer
48
  - dataset_size:356
49
+ - loss:CoSENTLoss
50
  widget:
51
  - source_sentence: これって?
52
  sentences:
 
84
  type: custom-arc-semantics-data
85
  metrics:
86
  - type: cosine_accuracy
87
+ value: 0.9550561797752809
88
  name: Cosine Accuracy
89
  - type: cosine_accuracy_threshold
90
+ value: 0.5568578243255615
91
  name: Cosine Accuracy Threshold
92
  - type: cosine_f1
93
+ value: 0.9655172413793103
94
  name: Cosine F1
95
  - type: cosine_f1_threshold
96
+ value: 0.5568578243255615
97
  name: Cosine F1 Threshold
98
  - type: cosine_precision
99
+ value: 0.9824561403508771
100
  name: Cosine Precision
101
  - type: cosine_recall
102
+ value: 0.9491525423728814
103
  name: Cosine Recall
104
  - type: cosine_ap
105
+ value: 0.9932329299017532
106
  name: Cosine Ap
107
  - type: dot_accuracy
108
+ value: 0.9438202247191011
109
  name: Dot Accuracy
110
  - type: dot_accuracy_threshold
111
+ value: 281.24676513671875
112
  name: Dot Accuracy Threshold
113
  - type: dot_f1
114
+ value: 0.957983193277311
115
  name: Dot F1
116
  - type: dot_f1_threshold
117
+ value: 240.45741271972656
118
  name: Dot F1 Threshold
119
  - type: dot_precision
120
+ value: 0.95
121
  name: Dot Precision
122
  - type: dot_recall
123
+ value: 0.9661016949152542
124
  name: Dot Recall
125
  - type: dot_ap
126
+ value: 0.992060744461618
127
  name: Dot Ap
128
  - type: manhattan_accuracy
129
+ value: 0.9550561797752809
130
  name: Manhattan Accuracy
131
  - type: manhattan_accuracy_threshold
132
+ value: 468.22576904296875
133
  name: Manhattan Accuracy Threshold
134
  - type: manhattan_f1
135
+ value: 0.9655172413793103
136
  name: Manhattan F1
137
  - type: manhattan_f1_threshold
138
+ value: 486.80523681640625
139
  name: Manhattan F1 Threshold
140
  - type: manhattan_precision
141
+ value: 0.9824561403508771
142
  name: Manhattan Precision
143
  - type: manhattan_recall
144
+ value: 0.9491525423728814
145
  name: Manhattan Recall
146
  - type: manhattan_ap
147
+ value: 0.9937064750898389
148
  name: Manhattan Ap
149
  - type: euclidean_accuracy
150
+ value: 0.9550561797752809
151
  name: Euclidean Accuracy
152
  - type: euclidean_accuracy_threshold
153
+ value: 21.117210388183594
154
  name: Euclidean Accuracy Threshold
155
  - type: euclidean_f1
156
+ value: 0.9655172413793103
157
  name: Euclidean F1
158
  - type: euclidean_f1_threshold
159
+ value: 21.95305633544922
160
  name: Euclidean F1 Threshold
161
  - type: euclidean_precision
162
+ value: 0.9824561403508771
163
  name: Euclidean Precision
164
  - type: euclidean_recall
165
+ value: 0.9491525423728814
166
  name: Euclidean Recall
167
  - type: euclidean_ap
168
+ value: 0.9933690931735095
169
  name: Euclidean Ap
170
  - type: max_accuracy
171
+ value: 0.9550561797752809
172
  name: Max Accuracy
173
  - type: max_accuracy_threshold
174
+ value: 468.22576904296875
175
  name: Max Accuracy Threshold
176
  - type: max_f1
177
+ value: 0.9655172413793103
178
  name: Max F1
179
  - type: max_f1_threshold
180
+ value: 486.80523681640625
181
  name: Max F1 Threshold
182
  - type: max_precision
183
+ value: 0.9824561403508771
184
  name: Max Precision
185
  - type: max_recall
186
+ value: 0.9661016949152542
187
  name: Max Recall
188
  - type: max_ap
189
+ value: 0.9937064750898389
190
  name: Max Ap
191
  ---
192
 
 
287
 
288
  | Metric | Value |
289
  |:-----------------------------|:-----------|
290
+ | cosine_accuracy | 0.9551 |
291
+ | cosine_accuracy_threshold | 0.5569 |
292
+ | cosine_f1 | 0.9655 |
293
+ | cosine_f1_threshold | 0.5569 |
294
+ | cosine_precision | 0.9825 |
295
+ | cosine_recall | 0.9492 |
296
+ | cosine_ap | 0.9932 |
297
+ | dot_accuracy | 0.9438 |
298
+ | dot_accuracy_threshold | 281.2468 |
299
+ | dot_f1 | 0.958 |
300
+ | dot_f1_threshold | 240.4574 |
301
+ | dot_precision | 0.95 |
302
+ | dot_recall | 0.9661 |
303
+ | dot_ap | 0.9921 |
304
+ | manhattan_accuracy | 0.9551 |
305
+ | manhattan_accuracy_threshold | 468.2258 |
306
+ | manhattan_f1 | 0.9655 |
307
+ | manhattan_f1_threshold | 486.8052 |
308
+ | manhattan_precision | 0.9825 |
309
+ | manhattan_recall | 0.9492 |
310
+ | manhattan_ap | 0.9937 |
311
+ | euclidean_accuracy | 0.9551 |
312
+ | euclidean_accuracy_threshold | 21.1172 |
313
+ | euclidean_f1 | 0.9655 |
314
+ | euclidean_f1_threshold | 21.9531 |
315
+ | euclidean_precision | 0.9825 |
316
+ | euclidean_recall | 0.9492 |
317
+ | euclidean_ap | 0.9934 |
318
+ | max_accuracy | 0.9551 |
319
+ | max_accuracy_threshold | 468.2258 |
320
+ | max_f1 | 0.9655 |
321
+ | max_f1_threshold | 486.8052 |
322
+ | max_precision | 0.9825 |
323
+ | max_recall | 0.9661 |
324
+ | **max_ap** | **0.9937** |
325
 
326
  <!--
327
  ## Bias, Risks and Limitations
 
355
  | <code>ジャックはどんな魔法を使うの?</code> | <code>見た目を変える魔法</code> | <code>0</code> |
356
  | <code>魔法使い</code> | <code>魔法をかけられる人</code> | <code>1</code> |
357
  | <code>ぬいぐるみが花</code> | <code>花がぬいぐるみに変えられている</code> | <code>1</code> |
358
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
359
+ ```json
360
+ {
361
+ "scale": 20.0,
362
+ "similarity_fct": "pairwise_cos_sim"
363
+ }
364
+ ```
365
 
366
  ### Evaluation Dataset
367
 
 
381
  | <code>トーチ</code> | <code>なにも要らない</code> | <code>0</code> |
382
  | <code>家の外</code> | <code>家の外へ行こう</code> | <code>1</code> |
383
  | <code>お皿に赤い染みがついていたから</code> | <code>棚からトマトがなくなってたから</code> | <code>0</code> |
384
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
385
+ ```json
386
+ {
387
+ "scale": 20.0,
388
+ "similarity_fct": "pairwise_cos_sim"
389
+ }
390
+ ```
391
 
392
  ### Training Hyperparameters
393
  #### Non-Default Hyperparameters
 
520
  | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
521
  |:-----:|:----:|:-------------:|:------:|:--------------------------------:|
522
  | None | 0 | - | - | 0.9511 |
523
+ | 1.0 | 45 | 1.9903 | 1.1863 | 0.9765 |
524
+ | 2.0 | 90 | 0.8198 | 1.0991 | 0.9873 |
525
+ | 3.0 | 135 | 0.0806 | 0.9033 | 0.9914 |
526
+ | 4.0 | 180 | 0.0024 | 0.7569 | 0.9930 |
527
+ | 5.0 | 225 | 0.0002 | 0.7598 | 0.9937 |
528
+ | 6.0 | 270 | 0.0001 | 0.7418 | 0.9937 |
529
+ | 7.0 | 315 | 0.0001 | 0.7322 | 0.9937 |
530
+ | 8.0 | 360 | 0.0001 | 0.7269 | 0.9937 |
531
+ | 9.0 | 405 | 0.0001 | 0.7277 | 0.9937 |
532
+ | 10.0 | 450 | 0.0001 | 0.7289 | 0.9937 |
533
+ | 11.0 | 495 | 0.0 | 0.7301 | 0.9937 |
534
+ | 12.0 | 540 | 0.0001 | 0.7299 | 0.9937 |
535
+ | 13.0 | 585 | 0.0001 | 0.7296 | 0.9937 |
536
 
537
 
538
  ### Framework Versions
 
561
  }
562
  ```
563
 
564
+ #### CoSENTLoss
565
+ ```bibtex
566
+ @online{kexuefm-8847,
567
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
568
+ author={Su Jianlin},
569
+ year={2022},
570
+ month={Jan},
571
+ url={https://kexue.fm/archives/8847},
572
+ }
573
+ ```
574
+
575
  <!--
576
  ## Glossary
577
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:656fa6a91d2f1ef8b5068cb095db7dc616a54abbbe033db496b7278e2090f78d
3
  size 442491744
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58c3dab56e3b4f32c43626942ffeec0674e7b11178e1c66e38f95f95fa629978
3
  size 442491744