LeoChiuu commited on
Commit
8a7276b
1 Parent(s): cf39f28

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - cosine_accuracy_threshold
9
+ - cosine_f1
10
+ - cosine_f1_threshold
11
+ - cosine_precision
12
+ - cosine_recall
13
+ - cosine_ap
14
+ - dot_accuracy
15
+ - dot_accuracy_threshold
16
+ - dot_f1
17
+ - dot_f1_threshold
18
+ - dot_precision
19
+ - dot_recall
20
+ - dot_ap
21
+ - manhattan_accuracy
22
+ - manhattan_accuracy_threshold
23
+ - manhattan_f1
24
+ - manhattan_f1_threshold
25
+ - manhattan_precision
26
+ - manhattan_recall
27
+ - manhattan_ap
28
+ - euclidean_accuracy
29
+ - euclidean_accuracy_threshold
30
+ - euclidean_f1
31
+ - euclidean_f1_threshold
32
+ - euclidean_precision
33
+ - euclidean_recall
34
+ - euclidean_ap
35
+ - max_accuracy
36
+ - max_accuracy_threshold
37
+ - max_f1
38
+ - max_f1_threshold
39
+ - max_precision
40
+ - max_recall
41
+ - max_ap
42
+ pipeline_tag: sentence-similarity
43
+ tags:
44
+ - sentence-transformers
45
+ - sentence-similarity
46
+ - feature-extraction
47
+ - generated_from_trainer
48
+ - dataset_size:216
49
+ - loss:MultipleNegativesRankingLoss
50
+ widget:
51
+ - source_sentence: Sophie why are you pressured?
52
+ sentences:
53
+ - Sophie Are you pressured?
54
+ - Did you place the scarf in the fireplace?
55
+ - A marked Globe.
56
+ - source_sentence: Because of the red stain from the dish
57
+ sentences:
58
+ - Are you using my slippers?
59
+ - Do you know this book?
60
+ - There was a red stain on the dish
61
+ - source_sentence: Outside
62
+ sentences:
63
+ - To grant the wish of having adventure
64
+ - Let's look inside
65
+ - Let's go outside
66
+ - source_sentence: Actually I want a candle
67
+ sentences:
68
+ - Is that a cloth on the tree?
69
+ - Did you have a beef stew for dinner?
70
+ - Give me a candle
71
+ - source_sentence: I found a flower pot.
72
+ sentences:
73
+ - Last night?
74
+ - I found flowers.
75
+ - Do you know this picture?
76
+ model-index:
77
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
78
+ results:
79
+ - task:
80
+ type: binary-classification
81
+ name: Binary Classification
82
+ dataset:
83
+ name: custom arc semantics data
84
+ type: custom-arc-semantics-data
85
+ metrics:
86
+ - type: cosine_accuracy
87
+ value: 0.9818181818181818
88
+ name: Cosine Accuracy
89
+ - type: cosine_accuracy_threshold
90
+ value: 0.26917901635169983
91
+ name: Cosine Accuracy Threshold
92
+ - type: cosine_f1
93
+ value: 0.9908256880733944
94
+ name: Cosine F1
95
+ - type: cosine_f1_threshold
96
+ value: 0.26917901635169983
97
+ name: Cosine F1 Threshold
98
+ - type: cosine_precision
99
+ value: 1.0
100
+ name: Cosine Precision
101
+ - type: cosine_recall
102
+ value: 0.9818181818181818
103
+ name: Cosine Recall
104
+ - type: cosine_ap
105
+ value: 1.0
106
+ name: Cosine Ap
107
+ - type: dot_accuracy
108
+ value: 0.9818181818181818
109
+ name: Dot Accuracy
110
+ - type: dot_accuracy_threshold
111
+ value: 0.2691790461540222
112
+ name: Dot Accuracy Threshold
113
+ - type: dot_f1
114
+ value: 0.9908256880733944
115
+ name: Dot F1
116
+ - type: dot_f1_threshold
117
+ value: 0.2691790461540222
118
+ name: Dot F1 Threshold
119
+ - type: dot_precision
120
+ value: 1.0
121
+ name: Dot Precision
122
+ - type: dot_recall
123
+ value: 0.9818181818181818
124
+ name: Dot Recall
125
+ - type: dot_ap
126
+ value: 1.0
127
+ name: Dot Ap
128
+ - type: manhattan_accuracy
129
+ value: 0.9818181818181818
130
+ name: Manhattan Accuracy
131
+ - type: manhattan_accuracy_threshold
132
+ value: 18.48493194580078
133
+ name: Manhattan Accuracy Threshold
134
+ - type: manhattan_f1
135
+ value: 0.9908256880733944
136
+ name: Manhattan F1
137
+ - type: manhattan_f1_threshold
138
+ value: 18.48493194580078
139
+ name: Manhattan F1 Threshold
140
+ - type: manhattan_precision
141
+ value: 1.0
142
+ name: Manhattan Precision
143
+ - type: manhattan_recall
144
+ value: 0.9818181818181818
145
+ name: Manhattan Recall
146
+ - type: manhattan_ap
147
+ value: 1.0
148
+ name: Manhattan Ap
149
+ - type: euclidean_accuracy
150
+ value: 0.9818181818181818
151
+ name: Euclidean Accuracy
152
+ - type: euclidean_accuracy_threshold
153
+ value: 1.2088721990585327
154
+ name: Euclidean Accuracy Threshold
155
+ - type: euclidean_f1
156
+ value: 0.9908256880733944
157
+ name: Euclidean F1
158
+ - type: euclidean_f1_threshold
159
+ value: 1.2088721990585327
160
+ name: Euclidean F1 Threshold
161
+ - type: euclidean_precision
162
+ value: 1.0
163
+ name: Euclidean Precision
164
+ - type: euclidean_recall
165
+ value: 0.9818181818181818
166
+ name: Euclidean Recall
167
+ - type: euclidean_ap
168
+ value: 1.0
169
+ name: Euclidean Ap
170
+ - type: max_accuracy
171
+ value: 0.9818181818181818
172
+ name: Max Accuracy
173
+ - type: max_accuracy_threshold
174
+ value: 18.48493194580078
175
+ name: Max Accuracy Threshold
176
+ - type: max_f1
177
+ value: 0.9908256880733944
178
+ name: Max F1
179
+ - type: max_f1_threshold
180
+ value: 18.48493194580078
181
+ name: Max F1 Threshold
182
+ - type: max_precision
183
+ value: 1.0
184
+ name: Max Precision
185
+ - type: max_recall
186
+ value: 0.9818181818181818
187
+ name: Max Recall
188
+ - type: max_ap
189
+ value: 1.0
190
+ name: Max Ap
191
+ ---
192
+
193
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
194
+
195
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
196
+
197
+ ## Model Details
198
+
199
+ ### Model Description
200
+ - **Model Type:** Sentence Transformer
201
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
202
+ - **Maximum Sequence Length:** 256 tokens
203
+ - **Output Dimensionality:** 384 tokens
204
+ - **Similarity Function:** Cosine Similarity
205
+ <!-- - **Training Dataset:** Unknown -->
206
+ <!-- - **Language:** Unknown -->
207
+ <!-- - **License:** Unknown -->
208
+
209
+ ### Model Sources
210
+
211
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
212
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
213
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
214
+
215
+ ### Full Model Architecture
216
+
217
+ ```
218
+ SentenceTransformer(
219
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
220
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
221
+ (2): Normalize()
222
+ )
223
+ ```
224
+
225
+ ## Usage
226
+
227
+ ### Direct Usage (Sentence Transformers)
228
+
229
+ First install the Sentence Transformers library:
230
+
231
+ ```bash
232
+ pip install -U sentence-transformers
233
+ ```
234
+
235
+ Then you can load this model and run inference.
236
+ ```python
237
+ from sentence_transformers import SentenceTransformer
238
+
239
+ # Download from the 🤗 Hub
240
+ model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2")
241
+ # Run inference
242
+ sentences = [
243
+ 'I found a flower pot.',
244
+ 'I found flowers.',
245
+ 'Do you know this picture?',
246
+ ]
247
+ embeddings = model.encode(sentences)
248
+ print(embeddings.shape)
249
+ # [3, 384]
250
+
251
+ # Get the similarity scores for the embeddings
252
+ similarities = model.similarity(embeddings, embeddings)
253
+ print(similarities.shape)
254
+ # [3, 3]
255
+ ```
256
+
257
+ <!--
258
+ ### Direct Usage (Transformers)
259
+
260
+ <details><summary>Click to see the direct usage in Transformers</summary>
261
+
262
+ </details>
263
+ -->
264
+
265
+ <!--
266
+ ### Downstream Usage (Sentence Transformers)
267
+
268
+ You can finetune this model on your own dataset.
269
+
270
+ <details><summary>Click to expand</summary>
271
+
272
+ </details>
273
+ -->
274
+
275
+ <!--
276
+ ### Out-of-Scope Use
277
+
278
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
279
+ -->
280
+
281
+ ## Evaluation
282
+
283
+ ### Metrics
284
+
285
+ #### Binary Classification
286
+ * Dataset: `custom-arc-semantics-data`
287
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
288
+
289
+ | Metric | Value |
290
+ |:-----------------------------|:--------|
291
+ | cosine_accuracy | 0.9818 |
292
+ | cosine_accuracy_threshold | 0.2692 |
293
+ | cosine_f1 | 0.9908 |
294
+ | cosine_f1_threshold | 0.2692 |
295
+ | cosine_precision | 1.0 |
296
+ | cosine_recall | 0.9818 |
297
+ | cosine_ap | 1.0 |
298
+ | dot_accuracy | 0.9818 |
299
+ | dot_accuracy_threshold | 0.2692 |
300
+ | dot_f1 | 0.9908 |
301
+ | dot_f1_threshold | 0.2692 |
302
+ | dot_precision | 1.0 |
303
+ | dot_recall | 0.9818 |
304
+ | dot_ap | 1.0 |
305
+ | manhattan_accuracy | 0.9818 |
306
+ | manhattan_accuracy_threshold | 18.4849 |
307
+ | manhattan_f1 | 0.9908 |
308
+ | manhattan_f1_threshold | 18.4849 |
309
+ | manhattan_precision | 1.0 |
310
+ | manhattan_recall | 0.9818 |
311
+ | manhattan_ap | 1.0 |
312
+ | euclidean_accuracy | 0.9818 |
313
+ | euclidean_accuracy_threshold | 1.2089 |
314
+ | euclidean_f1 | 0.9908 |
315
+ | euclidean_f1_threshold | 1.2089 |
316
+ | euclidean_precision | 1.0 |
317
+ | euclidean_recall | 0.9818 |
318
+ | euclidean_ap | 1.0 |
319
+ | max_accuracy | 0.9818 |
320
+ | max_accuracy_threshold | 18.4849 |
321
+ | max_f1 | 0.9908 |
322
+ | max_f1_threshold | 18.4849 |
323
+ | max_precision | 1.0 |
324
+ | max_recall | 0.9818 |
325
+ | **max_ap** | **1.0** |
326
+
327
+ <!--
328
+ ## Bias, Risks and Limitations
329
+
330
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
331
+ -->
332
+
333
+ <!--
334
+ ### Recommendations
335
+
336
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
337
+ -->
338
+
339
+ ## Training Details
340
+
341
+ ### Training Dataset
342
+
343
+ #### Unnamed Dataset
344
+
345
+
346
+ * Size: 216 training samples
347
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
348
+ * Approximate statistics based on the first 1000 samples:
349
+ | | text1 | text2 | label |
350
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
351
+ | type | string | string | int |
352
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.19 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.49 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
353
+ * Samples:
354
+ | text1 | text2 | label |
355
+ |:-------------------------------------------------|:---------------------------------------------------|:---------------|
356
+ | <code>Let's search inside</code> | <code>Let's look inside</code> | <code>1</code> |
357
+ | <code>Do you see your scarf in the wagon?</code> | <code>Is your scarf in the wagon?</code> | <code>1</code> |
358
+ | <code>Scarf on the tree.</code> | <code>Is that a scarf, the one on the tree?</code> | <code>1</code> |
359
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
360
+ ```json
361
+ {
362
+ "scale": 20.0,
363
+ "similarity_fct": "cos_sim"
364
+ }
365
+ ```
366
+
367
+ ### Evaluation Dataset
368
+
369
+ #### Unnamed Dataset
370
+
371
+
372
+ * Size: 55 evaluation samples
373
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
374
+ * Approximate statistics based on the first 1000 samples:
375
+ | | text1 | text2 | label |
376
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
377
+ | type | string | string | int |
378
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.04 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.55 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
379
+ * Samples:
380
+ | text1 | text2 | label |
381
+ |:---------------------------------|:-----------------------------------|:---------------|
382
+ | <code>A candle</code> | <code>I want a candle</code> | <code>1</code> |
383
+ | <code>I did </code> | <code>I did it</code> | <code>1</code> |
384
+ | <code>When you had dinner</code> | <code>Before cooking dinner</code> | <code>1</code> |
385
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
386
+ ```json
387
+ {
388
+ "scale": 20.0,
389
+ "similarity_fct": "cos_sim"
390
+ }
391
+ ```
392
+
393
+ ### Training Hyperparameters
394
+ #### Non-Default Hyperparameters
395
+
396
+ - `eval_strategy`: epoch
397
+ - `learning_rate`: 2e-05
398
+ - `num_train_epochs`: 13
399
+ - `warmup_ratio`: 0.1
400
+ - `fp16`: True
401
+ - `batch_sampler`: no_duplicates
402
+
403
+ #### All Hyperparameters
404
+ <details><summary>Click to expand</summary>
405
+
406
+ - `overwrite_output_dir`: False
407
+ - `do_predict`: False
408
+ - `eval_strategy`: epoch
409
+ - `prediction_loss_only`: True
410
+ - `per_device_train_batch_size`: 8
411
+ - `per_device_eval_batch_size`: 8
412
+ - `per_gpu_train_batch_size`: None
413
+ - `per_gpu_eval_batch_size`: None
414
+ - `gradient_accumulation_steps`: 1
415
+ - `eval_accumulation_steps`: None
416
+ - `torch_empty_cache_steps`: None
417
+ - `learning_rate`: 2e-05
418
+ - `weight_decay`: 0.0
419
+ - `adam_beta1`: 0.9
420
+ - `adam_beta2`: 0.999
421
+ - `adam_epsilon`: 1e-08
422
+ - `max_grad_norm`: 1.0
423
+ - `num_train_epochs`: 13
424
+ - `max_steps`: -1
425
+ - `lr_scheduler_type`: linear
426
+ - `lr_scheduler_kwargs`: {}
427
+ - `warmup_ratio`: 0.1
428
+ - `warmup_steps`: 0
429
+ - `log_level`: passive
430
+ - `log_level_replica`: warning
431
+ - `log_on_each_node`: True
432
+ - `logging_nan_inf_filter`: True
433
+ - `save_safetensors`: True
434
+ - `save_on_each_node`: False
435
+ - `save_only_model`: False
436
+ - `restore_callback_states_from_checkpoint`: False
437
+ - `no_cuda`: False
438
+ - `use_cpu`: False
439
+ - `use_mps_device`: False
440
+ - `seed`: 42
441
+ - `data_seed`: None
442
+ - `jit_mode_eval`: False
443
+ - `use_ipex`: False
444
+ - `bf16`: False
445
+ - `fp16`: True
446
+ - `fp16_opt_level`: O1
447
+ - `half_precision_backend`: auto
448
+ - `bf16_full_eval`: False
449
+ - `fp16_full_eval`: False
450
+ - `tf32`: None
451
+ - `local_rank`: 0
452
+ - `ddp_backend`: None
453
+ - `tpu_num_cores`: None
454
+ - `tpu_metrics_debug`: False
455
+ - `debug`: []
456
+ - `dataloader_drop_last`: False
457
+ - `dataloader_num_workers`: 0
458
+ - `dataloader_prefetch_factor`: None
459
+ - `past_index`: -1
460
+ - `disable_tqdm`: False
461
+ - `remove_unused_columns`: True
462
+ - `label_names`: None
463
+ - `load_best_model_at_end`: False
464
+ - `ignore_data_skip`: False
465
+ - `fsdp`: []
466
+ - `fsdp_min_num_params`: 0
467
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
468
+ - `fsdp_transformer_layer_cls_to_wrap`: None
469
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
470
+ - `deepspeed`: None
471
+ - `label_smoothing_factor`: 0.0
472
+ - `optim`: adamw_torch
473
+ - `optim_args`: None
474
+ - `adafactor`: False
475
+ - `group_by_length`: False
476
+ - `length_column_name`: length
477
+ - `ddp_find_unused_parameters`: None
478
+ - `ddp_bucket_cap_mb`: None
479
+ - `ddp_broadcast_buffers`: False
480
+ - `dataloader_pin_memory`: True
481
+ - `dataloader_persistent_workers`: False
482
+ - `skip_memory_metrics`: True
483
+ - `use_legacy_prediction_loop`: False
484
+ - `push_to_hub`: False
485
+ - `resume_from_checkpoint`: None
486
+ - `hub_model_id`: None
487
+ - `hub_strategy`: every_save
488
+ - `hub_private_repo`: False
489
+ - `hub_always_push`: False
490
+ - `gradient_checkpointing`: False
491
+ - `gradient_checkpointing_kwargs`: None
492
+ - `include_inputs_for_metrics`: False
493
+ - `eval_do_concat_batches`: True
494
+ - `fp16_backend`: auto
495
+ - `push_to_hub_model_id`: None
496
+ - `push_to_hub_organization`: None
497
+ - `mp_parameters`:
498
+ - `auto_find_batch_size`: False
499
+ - `full_determinism`: False
500
+ - `torchdynamo`: None
501
+ - `ray_scope`: last
502
+ - `ddp_timeout`: 1800
503
+ - `torch_compile`: False
504
+ - `torch_compile_backend`: None
505
+ - `torch_compile_mode`: None
506
+ - `dispatch_batches`: None
507
+ - `split_batches`: None
508
+ - `include_tokens_per_second`: False
509
+ - `include_num_input_tokens_seen`: False
510
+ - `neftune_noise_alpha`: None
511
+ - `optim_target_modules`: None
512
+ - `batch_eval_metrics`: False
513
+ - `eval_on_start`: False
514
+ - `eval_use_gather_object`: False
515
+ - `batch_sampler`: no_duplicates
516
+ - `multi_dataset_batch_sampler`: proportional
517
+
518
+ </details>
519
+
520
+ ### Training Logs
521
+ | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
522
+ |:-----:|:----:|:-------------:|:------:|:--------------------------------:|
523
+ | None | 0 | - | - | 1.0 |
524
+ | 1.0 | 27 | 0.2251 | 0.1920 | 1.0 |
525
+ | 2.0 | 54 | 0.1218 | 0.1768 | 1.0 |
526
+ | 3.0 | 81 | 0.0466 | 0.1644 | 1.0 |
527
+ | 4.0 | 108 | 0.0231 | 0.1514 | 1.0 |
528
+ | 5.0 | 135 | 0.0161 | 0.1374 | 1.0 |
529
+ | 6.0 | 162 | 0.0119 | 0.1339 | 1.0 |
530
+ | 7.0 | 189 | 0.0091 | 0.1331 | 1.0 |
531
+ | 8.0 | 216 | 0.0074 | 0.1292 | 1.0 |
532
+ | 9.0 | 243 | 0.0054 | 0.1265 | 1.0 |
533
+ | 10.0 | 270 | 0.0059 | 0.1244 | 1.0 |
534
+ | 11.0 | 297 | 0.0055 | 0.1254 | 1.0 |
535
+ | 12.0 | 324 | 0.0068 | 0.1236 | 1.0 |
536
+ | 13.0 | 351 | 0.0035 | 0.1234 | 1.0 |
537
+
538
+
539
+ ### Framework Versions
540
+ - Python: 3.10.14
541
+ - Sentence Transformers: 3.0.1
542
+ - Transformers: 4.44.2
543
+ - PyTorch: 2.4.0+cu121
544
+ - Accelerate: 0.34.0
545
+ - Datasets: 2.20.0
546
+ - Tokenizers: 0.19.1
547
+
548
+ ## Citation
549
+
550
+ ### BibTeX
551
+
552
+ #### Sentence Transformers
553
+ ```bibtex
554
+ @inproceedings{reimers-2019-sentence-bert,
555
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
556
+ author = "Reimers, Nils and Gurevych, Iryna",
557
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
558
+ month = "11",
559
+ year = "2019",
560
+ publisher = "Association for Computational Linguistics",
561
+ url = "https://arxiv.org/abs/1908.10084",
562
+ }
563
+ ```
564
+
565
+ #### MultipleNegativesRankingLoss
566
+ ```bibtex
567
+ @misc{henderson2017efficient,
568
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
569
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
570
+ year={2017},
571
+ eprint={1705.00652},
572
+ archivePrefix={arXiv},
573
+ primaryClass={cs.CL}
574
+ }
575
+ ```
576
+
577
+ <!--
578
+ ## Glossary
579
+
580
+ *Clearly define terms in order to be accessible across audiences.*
581
+ -->
582
+
583
+ <!--
584
+ ## Model Card Authors
585
+
586
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
587
+ -->
588
+
589
+ <!--
590
+ ## Model Card Contact
591
+
592
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
593
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6cc633b22dd645d5916470915970b032282a71c48bdd15a97c49a86bb8bc83b
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff