LeoAgis commited on
Commit
e37ff43
·
1 Parent(s): 3be5225

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.17 +/- 0.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79b3ed42613ac60395a88c7c640ee0d5ba8b24fa1a0fd42337953d6e6dd10e1a
3
+ size 108095
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdf80ea53a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fdf80f1ab70>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677863846139855607,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfJLmPojFCjyp8As/fJLmPojFCjyp8As/fJLmPojFCjyp8As/fJLmPojFCjyp8As/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9gp0P4Zb2r99KN6/vwXEPjtWo7+pS2A91oNvP7/nnj7yU5W/khvYP9iIGL72ErO9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB8kuY+iMUKPKnwCz+7YG26T3vAuXlWHbx8kuY+iMUKPKnwCz+7YG26T3vAuXlWHbx8kuY+iMUKPKnwCz+7YG26T3vAuXlWHbx8kuY+iMUKPKnwCz+7YG26T3vAuXlWHbyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.45033634 0.00846995 0.54664093]\n [0.45033634 0.00846995 0.54664093]\n [0.45033634 0.00846995 0.54664093]\n [0.45033634 0.00846995 0.54664093]]",
60
+ "desired_goal": "[[ 0.95329225 -1.7059181 -1.7356106 ]\n [ 0.38285634 -1.276069 0.05475966]\n [ 0.9356054 0.31036183 -1.1666243 ]\n [ 1.6883414 -0.14895952 -0.08743851]]",
61
+ "observation": "[[ 4.5033634e-01 8.4699467e-03 5.4664093e-01 -9.0552465e-04\n -3.6712966e-04 -9.6031362e-03]\n [ 4.5033634e-01 8.4699467e-03 5.4664093e-01 -9.0552465e-04\n -3.6712966e-04 -9.6031362e-03]\n [ 4.5033634e-01 8.4699467e-03 5.4664093e-01 -9.0552465e-04\n -3.6712966e-04 -9.6031362e-03]\n [ 4.5033634e-01 8.4699467e-03 5.4664093e-01 -9.0552465e-04\n -3.6712966e-04 -9.6031362e-03]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhm/sPYxxCb5WJ8E8f7sGvvkhBr4UWqk8xDjcvW3oDT5PuH8+90r+PUW50LwcF+Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.11544709 -0.13422221 0.02357833]\n [-0.13157462 -0.13098897 0.02067284]\n [-0.10753015 0.13858195 0.24972652]\n [ 0.12416642 -0.02547897 0.1113722 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPMCTFi7bEcCUhpRSlIwBbJRLMowBdJRHQKpfnwDvE0l1fZQoaAZoCWgPQwjf4uE9B9b1v5SGlFKUaBVLMmgWR0CqXz1KGtZFdX2UKGgGaAloD0MI39416EtvFcCUhpRSlGgVSzJoFkdAql7ed7OVxHV9lChoBmgJaA9DCDdTIR6JtxbAlIaUUpRoFUsyaBZHQKpeeD15B1N1fZQoaAZoCWgPQwik5NU5BmQIwJSGlFKUaBVLMmgWR0CqYM9rGipOdX2UKGgGaAloD0MIPX/aqE7nGcCUhpRSlGgVSzJoFkdAqmBvFrEcbXV9lChoBmgJaA9DCJ612y40l/O/lIaUUpRoFUsyaBZHQKpgEHymQ8x1fZQoaAZoCWgPQwgErFW7JiQNwJSGlFKUaBVLMmgWR0CqX6oRRMvidX2UKGgGaAloD0MI21Axzt/kCMCUhpRSlGgVSzJoFkdAqmHjJhfBvnV9lChoBmgJaA9DCDV9dsB15RDAlIaUUpRoFUsyaBZHQKphgZ62OQ11fZQoaAZoCWgPQwj+Ddqrj+cBwJSGlFKUaBVLMmgWR0CqYSLftQbddX2UKGgGaAloD0MIN/3ZjxSRBsCUhpRSlGgVSzJoFkdAqmC8yzollnV9lChoBmgJaA9DCHAIVWr2ABzAlIaUUpRoFUsyaBZHQKpi7i1Aqut1fZQoaAZoCWgPQwg2WaMeojEUwJSGlFKUaBVLMmgWR0CqYoycCo0idX2UKGgGaAloD0MIpDfcR24tCcCUhpRSlGgVSzJoFkdAqmItvVEux3V9lChoBmgJaA9DCEzGMZI9AgTAlIaUUpRoFUsyaBZHQKphx1zQu291fZQoaAZoCWgPQwg82GK3z+oFwJSGlFKUaBVLMmgWR0CqZB+36Q/5dX2UKGgGaAloD0MIZ5sb0xMWBMCUhpRSlGgVSzJoFkdAqmO+BxxT9HV9lChoBmgJaA9DCB+8dmnDQQ/AlIaUUpRoFUsyaBZHQKpjX7ngYP51fZQoaAZoCWgPQwhw7xr0pVcWwJSGlFKUaBVLMmgWR0CqYvk4FRpDdX2UKGgGaAloD0MILh1znrHvDsCUhpRSlGgVSzJoFkdAqmUrRD1GsnV9lChoBmgJaA9DCDc0ZacflA/AlIaUUpRoFUsyaBZHQKpkyZvUBn11fZQoaAZoCWgPQwg7Un3nF6URwJSGlFKUaBVLMmgWR0CqZGrK3d9EdX2UKGgGaAloD0MI6EzaVN0DDcCUhpRSlGgVSzJoFkdAqmQEbHZK4HV9lChoBmgJaA9DCMgKfhtifPm/lIaUUpRoFUsyaBZHQKpmNcoH9m91fZQoaAZoCWgPQwiXyAVn8PcPwJSGlFKUaBVLMmgWR0CqZdQb+98JdX2UKGgGaAloD0MI2AxwQbb8FsCUhpRSlGgVSzJoFkdAqmV1GLDQ7nV9lChoBmgJaA9DCIDUJk7uNw7AlIaUUpRoFUsyaBZHQKplDqqOtGN1fZQoaAZoCWgPQwgA5lq0AJ0QwJSGlFKUaBVLMmgWR0CqZ3Hck+otdX2UKGgGaAloD0MIJAot6/7RAsCUhpRSlGgVSzJoFkdAqmcQNVinYXV9lChoBmgJaA9DCEG5bd+jvgLAlIaUUpRoFUsyaBZHQKpmscH4XXR1fZQoaAZoCWgPQwgzNnSzPzAJwJSGlFKUaBVLMmgWR0CqZktbcGkfdX2UKGgGaAloD0MIeF4qNuZVDMCUhpRSlGgVSzJoFkdAqmh8rupjt3V9lChoBmgJaA9DCOC8OPHVnhPAlIaUUpRoFUsyaBZHQKpoG1qnFYN1fZQoaAZoCWgPQwiSPxh47k0QwJSGlFKUaBVLMmgWR0CqZ7xgAp8XdX2UKGgGaAloD0MI3bQZpyEKBcCUhpRSlGgVSzJoFkdAqmdV3yI553V9lChoBmgJaA9DCM0hqYWSCfa/lIaUUpRoFUsyaBZHQKppi/qPfbd1fZQoaAZoCWgPQwhcO1ESEmkFwJSGlFKUaBVLMmgWR0CqaSpT/ACXdX2UKGgGaAloD0MIk3NiD+0jAMCUhpRSlGgVSzJoFkdAqmjLpA2Q4nV9lChoBmgJaA9DCHNJ1XYTvAnAlIaUUpRoFUsyaBZHQKpoZUXpGF11fZQoaAZoCWgPQwjGUE60qzAIwJSGlFKUaBVLMmgWR0Cqap1vuPV/dX2UKGgGaAloD0MIOUTcnEpmBsCUhpRSlGgVSzJoFkdAqmo7+717IHV9lChoBmgJaA9DCFlrKLUXEQvAlIaUUpRoFUsyaBZHQKpp3PZ7HAB1fZQoaAZoCWgPQwgHliNkIK8FwJSGlFKUaBVLMmgWR0CqaXaQeV9ndX2UKGgGaAloD0MIdAexM4WuB8CUhpRSlGgVSzJoFkdAqmupA4XGfnV9lChoBmgJaA9DCNqOqbuyywXAlIaUUpRoFUsyaBZHQKprR5D7ZWd1fZQoaAZoCWgPQwiMguDx7R0UwJSGlFKUaBVLMmgWR0Cqauif6Gg0dX2UKGgGaAloD0MIDW/W4H31DcCUhpRSlGgVSzJoFkdAqmqCU3XI2nV9lChoBmgJaA9DCPWidr8K0APAlIaUUpRoFUsyaBZHQKpsydFvybx1fZQoaAZoCWgPQwjT9NkB19UHwJSGlFKUaBVLMmgWR0CqbGglnh86dX2UKGgGaAloD0MIou4DkNpkA8CUhpRSlGgVSzJoFkdAqmwJOYYzi3V9lChoBmgJaA9DCK7zb5f96hDAlIaUUpRoFUsyaBZHQKproxVQyh11fZQoaAZoCWgPQwjgha3ZyqsHwJSGlFKUaBVLMmgWR0CqbfsJhOQAdX2UKGgGaAloD0MIUUoIVtWbEsCUhpRSlGgVSzJoFkdAqm2aYu01InV9lChoBmgJaA9DCNydtdsutPi/lIaUUpRoFUsyaBZHQKptO+pwS8J1fZQoaAZoCWgPQwgGuvYF9GIHwJSGlFKUaBVLMmgWR0CqbNXqZ+hHdX2UKGgGaAloD0MIH5+QnbfRDMCUhpRSlGgVSzJoFkdAqm8ZBsyi23V9lChoBmgJaA9DCKzJU1bTtQHAlIaUUpRoFUsyaBZHQKput5dGAkN1fZQoaAZoCWgPQwgaFM0DWEQRwJSGlFKUaBVLMmgWR0CqblitA9mpdX2UKGgGaAloD0MIMQxYchUrCsCUhpRSlGgVSzJoFkdAqm3yab4Ju3V9lChoBmgJaA9DCPuxSX7EbwzAlIaUUpRoFUsyaBZHQKpwpWJaaCt1fZQoaAZoCWgPQwjBO/n02LYQwJSGlFKUaBVLMmgWR0CqcERtP558dX2UKGgGaAloD0MIB9Dv+zcvBMCUhpRSlGgVSzJoFkdAqm/mom5UcXV9lChoBmgJaA9DCMJpwYu+YgPAlIaUUpRoFUsyaBZHQKpvgQwK0D51fZQoaAZoCWgPQwhYqDXNO24AwJSGlFKUaBVLMmgWR0Cqcmbwz+FUdX2UKGgGaAloD0MIUpyjjo6r9r+UhpRSlGgVSzJoFkdAqnIGCVbA13V9lChoBmgJaA9DCMf2WtB7wwXAlIaUUpRoFUsyaBZHQKpxp80DU3J1fZQoaAZoCWgPQwiA8+LEV1sKwJSGlFKUaBVLMmgWR0CqcUI91U2ldX2UKGgGaAloD0MIOslWl1NiD8CUhpRSlGgVSzJoFkdAqnRNMEidKHV9lChoBmgJaA9DCJBPyM7beATAlIaUUpRoFUsyaBZHQKpz7NnoPkJ1fZQoaAZoCWgPQwg/kLxzKCMJwJSGlFKUaBVLMmgWR0Cqc47GWD6FdX2UKGgGaAloD0MIe9rhr8na/L+UhpRSlGgVSzJoFkdAqnMpK8L8aXV9lChoBmgJaA9DCH/7OnDOKAPAlIaUUpRoFUsyaBZHQKp2IbzbvgF1fZQoaAZoCWgPQwgRcAhVapYEwJSGlFKUaBVLMmgWR0CqdcFXJYDDdX2UKGgGaAloD0MIW3ufqkJDAMCUhpRSlGgVSzJoFkdAqnVjmwJPZnV9lChoBmgJaA9DCJ8hHLPsCQbAlIaUUpRoFUsyaBZHQKp0/ekYXO51fZQoaAZoCWgPQwj9M4P4wO4MwJSGlFKUaBVLMmgWR0Cqd/pIczZZdX2UKGgGaAloD0MIlE4kmGomDcCUhpRSlGgVSzJoFkdAqneZyZKFqXV9lChoBmgJaA9DCKRTVz7L0wrAlIaUUpRoFUsyaBZHQKp3O6shgVp1fZQoaAZoCWgPQwhE2zF1V9YCwJSGlFKUaBVLMmgWR0CqdtX8n/kvdX2UKGgGaAloD0MIMjuL3qmgEcCUhpRSlGgVSzJoFkdAqnm97+kxh3V9lChoBmgJaA9DCPFo44i1eATAlIaUUpRoFUsyaBZHQKp5XFvQ4S91fZQoaAZoCWgPQwg4SfPHtPb7v5SGlFKUaBVLMmgWR0CqeP1qN6w/dX2UKGgGaAloD0MIol7waU4e+L+UhpRSlGgVSzJoFkdAqniXMpw0f3V9lChoBmgJaA9DCKJinL8JFRDAlIaUUpRoFUsyaBZHQKp6ytfXwsp1fZQoaAZoCWgPQwgCZOjYQcUFwJSGlFKUaBVLMmgWR0CqemmeUY8/dX2UKGgGaAloD0MIuHaiJCTS/b+UhpRSlGgVSzJoFkdAqnoKtJWeYnV9lChoBmgJaA9DCKgck8X9ZwTAlIaUUpRoFUsyaBZHQKp5pEhq0t11fZQoaAZoCWgPQwhxkBDlCxoJwJSGlFKUaBVLMmgWR0Cqe94XoC+2dX2UKGgGaAloD0MIw7tcxHeyEMCUhpRSlGgVSzJoFkdAqnt84rBj4HV9lChoBmgJaA9DCFDfMqfLghLAlIaUUpRoFUsyaBZHQKp7He7+T/11fZQoaAZoCWgPQwg3je21oDcEwJSGlFKUaBVLMmgWR0CqereLm6oVdX2UKGgGaAloD0MI8ExoklgSAsCUhpRSlGgVSzJoFkdAqnzoznA6+3V9lChoBmgJaA9DCA2MvKyJ5RLAlIaUUpRoFUsyaBZHQKp8hxXnyNJ1fZQoaAZoCWgPQwjPFaWEYFX7v5SGlFKUaBVLMmgWR0CqfCgctGutdX2UKGgGaAloD0MIhssqbAYYA8CUhpRSlGgVSzJoFkdAqnvB3V09yXV9lChoBmgJaA9DCJLNVfMcsQjAlIaUUpRoFUsyaBZHQKp97D50r9V1fZQoaAZoCWgPQwjSOqqaIKoBwJSGlFKUaBVLMmgWR0CqfYqF7D2rdX2UKGgGaAloD0MImIV2TrMA+L+UhpRSlGgVSzJoFkdAqn0rjghr33V9lChoBmgJaA9DCNQNFHgnfwTAlIaUUpRoFUsyaBZHQKp8xREWqLl1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7340d45b6fb27fbbf550090545d51e32863d1baa4ccf798927093a23cde5b87c
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d2d2b09a9b895b0f8b607d6201edba8209a5c5f13df5b5511ebb148c0657670
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdf80ea53a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdf80f1ab70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677863846139855607, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfJLmPojFCjyp8As/fJLmPojFCjyp8As/fJLmPojFCjyp8As/fJLmPojFCjyp8As/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9gp0P4Zb2r99KN6/vwXEPjtWo7+pS2A91oNvP7/nnj7yU5W/khvYP9iIGL72ErO9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB8kuY+iMUKPKnwCz+7YG26T3vAuXlWHbx8kuY+iMUKPKnwCz+7YG26T3vAuXlWHbx8kuY+iMUKPKnwCz+7YG26T3vAuXlWHbx8kuY+iMUKPKnwCz+7YG26T3vAuXlWHbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45033634 0.00846995 0.54664093]\n [0.45033634 0.00846995 0.54664093]\n [0.45033634 0.00846995 0.54664093]\n [0.45033634 0.00846995 0.54664093]]", "desired_goal": "[[ 0.95329225 -1.7059181 -1.7356106 ]\n [ 0.38285634 -1.276069 0.05475966]\n [ 0.9356054 0.31036183 -1.1666243 ]\n [ 1.6883414 -0.14895952 -0.08743851]]", "observation": "[[ 4.5033634e-01 8.4699467e-03 5.4664093e-01 -9.0552465e-04\n -3.6712966e-04 -9.6031362e-03]\n [ 4.5033634e-01 8.4699467e-03 5.4664093e-01 -9.0552465e-04\n -3.6712966e-04 -9.6031362e-03]\n [ 4.5033634e-01 8.4699467e-03 5.4664093e-01 -9.0552465e-04\n -3.6712966e-04 -9.6031362e-03]\n [ 4.5033634e-01 8.4699467e-03 5.4664093e-01 -9.0552465e-04\n -3.6712966e-04 -9.6031362e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhm/sPYxxCb5WJ8E8f7sGvvkhBr4UWqk8xDjcvW3oDT5PuH8+90r+PUW50LwcF+Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11544709 -0.13422221 0.02357833]\n [-0.13157462 -0.13098897 0.02067284]\n [-0.10753015 0.13858195 0.24972652]\n [ 0.12416642 -0.02547897 0.1113722 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPMCTFi7bEcCUhpRSlIwBbJRLMowBdJRHQKpfnwDvE0l1fZQoaAZoCWgPQwjf4uE9B9b1v5SGlFKUaBVLMmgWR0CqXz1KGtZFdX2UKGgGaAloD0MI39416EtvFcCUhpRSlGgVSzJoFkdAql7ed7OVxHV9lChoBmgJaA9DCDdTIR6JtxbAlIaUUpRoFUsyaBZHQKpeeD15B1N1fZQoaAZoCWgPQwik5NU5BmQIwJSGlFKUaBVLMmgWR0CqYM9rGipOdX2UKGgGaAloD0MIPX/aqE7nGcCUhpRSlGgVSzJoFkdAqmBvFrEcbXV9lChoBmgJaA9DCJ612y40l/O/lIaUUpRoFUsyaBZHQKpgEHymQ8x1fZQoaAZoCWgPQwgErFW7JiQNwJSGlFKUaBVLMmgWR0CqX6oRRMvidX2UKGgGaAloD0MI21Axzt/kCMCUhpRSlGgVSzJoFkdAqmHjJhfBvnV9lChoBmgJaA9DCDV9dsB15RDAlIaUUpRoFUsyaBZHQKphgZ62OQ11fZQoaAZoCWgPQwj+Ddqrj+cBwJSGlFKUaBVLMmgWR0CqYSLftQbddX2UKGgGaAloD0MIN/3ZjxSRBsCUhpRSlGgVSzJoFkdAqmC8yzollnV9lChoBmgJaA9DCHAIVWr2ABzAlIaUUpRoFUsyaBZHQKpi7i1Aqut1fZQoaAZoCWgPQwg2WaMeojEUwJSGlFKUaBVLMmgWR0CqYoycCo0idX2UKGgGaAloD0MIpDfcR24tCcCUhpRSlGgVSzJoFkdAqmItvVEux3V9lChoBmgJaA9DCEzGMZI9AgTAlIaUUpRoFUsyaBZHQKphx1zQu291fZQoaAZoCWgPQwg82GK3z+oFwJSGlFKUaBVLMmgWR0CqZB+36Q/5dX2UKGgGaAloD0MIZ5sb0xMWBMCUhpRSlGgVSzJoFkdAqmO+BxxT9HV9lChoBmgJaA9DCB+8dmnDQQ/AlIaUUpRoFUsyaBZHQKpjX7ngYP51fZQoaAZoCWgPQwhw7xr0pVcWwJSGlFKUaBVLMmgWR0CqYvk4FRpDdX2UKGgGaAloD0MILh1znrHvDsCUhpRSlGgVSzJoFkdAqmUrRD1GsnV9lChoBmgJaA9DCDc0ZacflA/AlIaUUpRoFUsyaBZHQKpkyZvUBn11fZQoaAZoCWgPQwg7Un3nF6URwJSGlFKUaBVLMmgWR0CqZGrK3d9EdX2UKGgGaAloD0MI6EzaVN0DDcCUhpRSlGgVSzJoFkdAqmQEbHZK4HV9lChoBmgJaA9DCMgKfhtifPm/lIaUUpRoFUsyaBZHQKpmNcoH9m91fZQoaAZoCWgPQwiXyAVn8PcPwJSGlFKUaBVLMmgWR0CqZdQb+98JdX2UKGgGaAloD0MI2AxwQbb8FsCUhpRSlGgVSzJoFkdAqmV1GLDQ7nV9lChoBmgJaA9DCIDUJk7uNw7AlIaUUpRoFUsyaBZHQKplDqqOtGN1fZQoaAZoCWgPQwgA5lq0AJ0QwJSGlFKUaBVLMmgWR0CqZ3Hck+otdX2UKGgGaAloD0MIJAot6/7RAsCUhpRSlGgVSzJoFkdAqmcQNVinYXV9lChoBmgJaA9DCEG5bd+jvgLAlIaUUpRoFUsyaBZHQKpmscH4XXR1fZQoaAZoCWgPQwgzNnSzPzAJwJSGlFKUaBVLMmgWR0CqZktbcGkfdX2UKGgGaAloD0MIeF4qNuZVDMCUhpRSlGgVSzJoFkdAqmh8rupjt3V9lChoBmgJaA9DCOC8OPHVnhPAlIaUUpRoFUsyaBZHQKpoG1qnFYN1fZQoaAZoCWgPQwiSPxh47k0QwJSGlFKUaBVLMmgWR0CqZ7xgAp8XdX2UKGgGaAloD0MI3bQZpyEKBcCUhpRSlGgVSzJoFkdAqmdV3yI553V9lChoBmgJaA9DCM0hqYWSCfa/lIaUUpRoFUsyaBZHQKppi/qPfbd1fZQoaAZoCWgPQwhcO1ESEmkFwJSGlFKUaBVLMmgWR0CqaSpT/ACXdX2UKGgGaAloD0MIk3NiD+0jAMCUhpRSlGgVSzJoFkdAqmjLpA2Q4nV9lChoBmgJaA9DCHNJ1XYTvAnAlIaUUpRoFUsyaBZHQKpoZUXpGF11fZQoaAZoCWgPQwjGUE60qzAIwJSGlFKUaBVLMmgWR0Cqap1vuPV/dX2UKGgGaAloD0MIOUTcnEpmBsCUhpRSlGgVSzJoFkdAqmo7+717IHV9lChoBmgJaA9DCFlrKLUXEQvAlIaUUpRoFUsyaBZHQKpp3PZ7HAB1fZQoaAZoCWgPQwgHliNkIK8FwJSGlFKUaBVLMmgWR0CqaXaQeV9ndX2UKGgGaAloD0MIdAexM4WuB8CUhpRSlGgVSzJoFkdAqmupA4XGfnV9lChoBmgJaA9DCNqOqbuyywXAlIaUUpRoFUsyaBZHQKprR5D7ZWd1fZQoaAZoCWgPQwiMguDx7R0UwJSGlFKUaBVLMmgWR0Cqauif6Gg0dX2UKGgGaAloD0MIDW/W4H31DcCUhpRSlGgVSzJoFkdAqmqCU3XI2nV9lChoBmgJaA9DCPWidr8K0APAlIaUUpRoFUsyaBZHQKpsydFvybx1fZQoaAZoCWgPQwjT9NkB19UHwJSGlFKUaBVLMmgWR0CqbGglnh86dX2UKGgGaAloD0MIou4DkNpkA8CUhpRSlGgVSzJoFkdAqmwJOYYzi3V9lChoBmgJaA9DCK7zb5f96hDAlIaUUpRoFUsyaBZHQKproxVQyh11fZQoaAZoCWgPQwjgha3ZyqsHwJSGlFKUaBVLMmgWR0CqbfsJhOQAdX2UKGgGaAloD0MIUUoIVtWbEsCUhpRSlGgVSzJoFkdAqm2aYu01InV9lChoBmgJaA9DCNydtdsutPi/lIaUUpRoFUsyaBZHQKptO+pwS8J1fZQoaAZoCWgPQwgGuvYF9GIHwJSGlFKUaBVLMmgWR0CqbNXqZ+hHdX2UKGgGaAloD0MIH5+QnbfRDMCUhpRSlGgVSzJoFkdAqm8ZBsyi23V9lChoBmgJaA9DCKzJU1bTtQHAlIaUUpRoFUsyaBZHQKput5dGAkN1fZQoaAZoCWgPQwgaFM0DWEQRwJSGlFKUaBVLMmgWR0CqblitA9mpdX2UKGgGaAloD0MIMQxYchUrCsCUhpRSlGgVSzJoFkdAqm3yab4Ju3V9lChoBmgJaA9DCPuxSX7EbwzAlIaUUpRoFUsyaBZHQKpwpWJaaCt1fZQoaAZoCWgPQwjBO/n02LYQwJSGlFKUaBVLMmgWR0CqcERtP558dX2UKGgGaAloD0MIB9Dv+zcvBMCUhpRSlGgVSzJoFkdAqm/mom5UcXV9lChoBmgJaA9DCMJpwYu+YgPAlIaUUpRoFUsyaBZHQKpvgQwK0D51fZQoaAZoCWgPQwhYqDXNO24AwJSGlFKUaBVLMmgWR0Cqcmbwz+FUdX2UKGgGaAloD0MIUpyjjo6r9r+UhpRSlGgVSzJoFkdAqnIGCVbA13V9lChoBmgJaA9DCMf2WtB7wwXAlIaUUpRoFUsyaBZHQKpxp80DU3J1fZQoaAZoCWgPQwiA8+LEV1sKwJSGlFKUaBVLMmgWR0CqcUI91U2ldX2UKGgGaAloD0MIOslWl1NiD8CUhpRSlGgVSzJoFkdAqnRNMEidKHV9lChoBmgJaA9DCJBPyM7beATAlIaUUpRoFUsyaBZHQKpz7NnoPkJ1fZQoaAZoCWgPQwg/kLxzKCMJwJSGlFKUaBVLMmgWR0Cqc47GWD6FdX2UKGgGaAloD0MIe9rhr8na/L+UhpRSlGgVSzJoFkdAqnMpK8L8aXV9lChoBmgJaA9DCH/7OnDOKAPAlIaUUpRoFUsyaBZHQKp2IbzbvgF1fZQoaAZoCWgPQwgRcAhVapYEwJSGlFKUaBVLMmgWR0CqdcFXJYDDdX2UKGgGaAloD0MIW3ufqkJDAMCUhpRSlGgVSzJoFkdAqnVjmwJPZnV9lChoBmgJaA9DCJ8hHLPsCQbAlIaUUpRoFUsyaBZHQKp0/ekYXO51fZQoaAZoCWgPQwj9M4P4wO4MwJSGlFKUaBVLMmgWR0Cqd/pIczZZdX2UKGgGaAloD0MIlE4kmGomDcCUhpRSlGgVSzJoFkdAqneZyZKFqXV9lChoBmgJaA9DCKRTVz7L0wrAlIaUUpRoFUsyaBZHQKp3O6shgVp1fZQoaAZoCWgPQwhE2zF1V9YCwJSGlFKUaBVLMmgWR0CqdtX8n/kvdX2UKGgGaAloD0MIMjuL3qmgEcCUhpRSlGgVSzJoFkdAqnm97+kxh3V9lChoBmgJaA9DCPFo44i1eATAlIaUUpRoFUsyaBZHQKp5XFvQ4S91fZQoaAZoCWgPQwg4SfPHtPb7v5SGlFKUaBVLMmgWR0CqeP1qN6w/dX2UKGgGaAloD0MIol7waU4e+L+UhpRSlGgVSzJoFkdAqniXMpw0f3V9lChoBmgJaA9DCKJinL8JFRDAlIaUUpRoFUsyaBZHQKp6ytfXwsp1fZQoaAZoCWgPQwgCZOjYQcUFwJSGlFKUaBVLMmgWR0CqemmeUY8/dX2UKGgGaAloD0MIuHaiJCTS/b+UhpRSlGgVSzJoFkdAqnoKtJWeYnV9lChoBmgJaA9DCKgck8X9ZwTAlIaUUpRoFUsyaBZHQKp5pEhq0t11fZQoaAZoCWgPQwhxkBDlCxoJwJSGlFKUaBVLMmgWR0Cqe94XoC+2dX2UKGgGaAloD0MIw7tcxHeyEMCUhpRSlGgVSzJoFkdAqnt84rBj4HV9lChoBmgJaA9DCFDfMqfLghLAlIaUUpRoFUsyaBZHQKp7He7+T/11fZQoaAZoCWgPQwg3je21oDcEwJSGlFKUaBVLMmgWR0CqereLm6oVdX2UKGgGaAloD0MI8ExoklgSAsCUhpRSlGgVSzJoFkdAqnzoznA6+3V9lChoBmgJaA9DCA2MvKyJ5RLAlIaUUpRoFUsyaBZHQKp8hxXnyNJ1fZQoaAZoCWgPQwjPFaWEYFX7v5SGlFKUaBVLMmgWR0CqfCgctGutdX2UKGgGaAloD0MIhssqbAYYA8CUhpRSlGgVSzJoFkdAqnvB3V09yXV9lChoBmgJaA9DCJLNVfMcsQjAlIaUUpRoFUsyaBZHQKp97D50r9V1fZQoaAZoCWgPQwjSOqqaIKoBwJSGlFKUaBVLMmgWR0CqfYqF7D2rdX2UKGgGaAloD0MImIV2TrMA+L+UhpRSlGgVSzJoFkdAqn0rjghr33V9lChoBmgJaA9DCNQNFHgnfwTAlIaUUpRoFUsyaBZHQKp8xREWqLl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (763 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.166643826663494, "std_reward": 0.751380016313648, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-03T18:39:17.746154"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4f711a9bf5b2f4935991a999e72d08f09a1e3ef210626cf95a042742242fb3a
3
+ size 3056