Lendalf commited on
Commit
46ad19e
1 Parent(s): 73a3c03

Test PPO model for Lunar Lander

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -146.15 +/- 29.77
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcd4e42680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcd4e42710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcd4e427a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcd4e42830>", "_build": "<function ActorCriticPolicy._build at 0x7fbcd4e428c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbcd4e42950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcd4e429e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbcd4e42a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcd4e42b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcd4e42b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcd4e42c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbcd4e970f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651935603.2733197, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYCe7xxRAs/1gPVPF+pkL924Re9TdBzPQAAAAAAAAAAg8zHPs0ffz8qyXY/y7dTvzC0Ir9ilMu+AAAAAAAAAAC4eQy/+oZfPpPrf79CRc29O4DQP2oMNkAAAAAAAAAAAObk9L46xdk+XOeIv7Fnj78faRo/7SRpPQAAAAAAAAAAzYyJude+sz/Qztm8xoWXvtfxojnmWMU7AAAAAAAAAABApWY+fvm9P8T5MD9qklm+cV6Cvst+XL4AAAAAAAAAAHM5Uj478fk+FnvZPknCqL85s1W/0zTbvgAAAAAAAAAAmg6xvVaBUT9KyTG+O4luv4oNpL2Nolm+AAAAAAAAAABS3Ci/6GabPu76qL9x16S/lSFmPxto6D0AAAAAAAAAALN3g71iuaQ/TN85v8k5Nb/UiXA9uhIaPgAAAAAAAAAAmCKRvpJlrj8CZeu+p2DPvrkQgb58QSm+AAAAAAAAAABTHyU/tCWkPrIuDj9K5pO/P4s2PqXrlT4AAAAAAAAAAABoCr08bYY/IhB/vSH0M7/VgpK9Bp2LvQAAAAAAAAAAM7CHPSp6qz82lMg+medvvtV94b1azhG+AAAAAAAAAACmCNO9K3GjP7pv/75fh/u+zcBxPXlWCjsAAAAAAAAAAKiqob6D/9Y+gyxEv8sDk7/yMv4+P5FBPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1a90Prz/ZMCUhpRSlIwBbJRLTowBdJRHQCJtEb5uZTh1fZQoaAZoCWgPQwi5MxMM59JmwJSGlFKUaBVLP2gWR0Ai/w2ETQE7dX2UKGgGaAloD0MItOkI4GbJWcCUhpRSlGgVS1doFkdAIxgIQe3hGnV9lChoBmgJaA9DCChGlswx/W3AlIaUUpRoFUtQaBZHQCNOuPmxMWZ1fZQoaAZoCWgPQwjVyoRf6i9rwJSGlFKUaBVLZWgWR0AjRcer+5vtdX2UKGgGaAloD0MIWYgOgaN0dcCUhpRSlGgVS2ZoFkdAI0T41xbSqnV9lChoBmgJaA9DCJONB1ts1mPAlIaUUpRoFUtpaBZHQCNsrAgxJul1fZQoaAZoCWgPQwg4Z0Rp7w1jwJSGlFKUaBVLX2gWR0AjqF/QSi/PdX2UKGgGaAloD0MI9Z1flKCda8CUhpRSlGgVS1toFkdAI9AGbCrLhnV9lChoBmgJaA9DCGvUQzT6EXrAlIaUUpRoFUteaBZHQCPoJTl1bJR1fZQoaAZoCWgPQwgXEcXkzTBwwJSGlFKUaBVLi2gWR0Aj3BEa2nbZdX2UKGgGaAloD0MI58jKL4OvW8CUhpRSlGgVS2JoFkdAJAUulGgBcXV9lChoBmgJaA9DCBgLQ+R0imvAlIaUUpRoFUtuaBZHQCQPj6vaDf51fZQoaAZoCWgPQwjXhopx/sdzwJSGlFKUaBVLWmgWR0AkDzkp7TlUdX2UKGgGaAloD0MIXtkFg+tWc8CUhpRSlGgVS15oFkdAJAru6VdHD3V9lChoBmgJaA9DCCYapOApwlDAlIaUUpRoFUs9aBZHQCQivC/Glyl1fZQoaAZoCWgPQwh9I7pn3QNiwJSGlFKUaBVLQGgWR0AkKd7OVxCIdX2UKGgGaAloD0MIpmQ5CaXfW8CUhpRSlGgVS15oFkdAJDSoGY8dP3V9lChoBmgJaA9DCCFYVS+/61TAlIaUUpRoFUtJaBZHQCRPFglWwNd1fZQoaAZoCWgPQwgIlE25gk9wwJSGlFKUaBVLcGgWR0AkVefI0ZWJdX2UKGgGaAloD0MIU82spYCGWsCUhpRSlGgVSztoFkdAJFWphnanJnV9lChoBmgJaA9DCGpLHeT1lVXAlIaUUpRoFUtRaBZHQCRVV7x/d691fZQoaAZoCWgPQwhihPBoY09mwJSGlFKUaBVLWmgWR0AkhRm9QGfPdX2UKGgGaAloD0MIVi3pKAdvUMCUhpRSlGgVS2poFkdAJIz2WY4Qz3V9lChoBmgJaA9DCLyQDg9h0FnAlIaUUpRoFUtPaBZHQCTLhky1uzh1fZQoaAZoCWgPQwh9lufB3S5ZwJSGlFKUaBVLSmgWR0Ak3mEGqxTsdX2UKGgGaAloD0MIWqFI93PPWsCUhpRSlGgVS1poFkdAJOFhgE2YOXV9lChoBmgJaA9DCIZXkjzXI3rAlIaUUpRoFUtfaBZHQCTkKeCkGiZ1fZQoaAZoCWgPQwiOW8zPDUZYwJSGlFKUaBVLRGgWR0Ak9uAI6bONdX2UKGgGaAloD0MI/+kGCrwkYMCUhpRSlGgVS0toFkdAJPmig00m+nV9lChoBmgJaA9DCG3F/rI7JXfAlIaUUpRoFUtaaBZHQCUSt5le4Td1fZQoaAZoCWgPQwhmM4ekFhVTwJSGlFKUaBVLRWgWR0AlGb8WKuSwdX2UKGgGaAloD0MIz9ptF9o7dcCUhpRSlGgVS1doFkdAJSAAyVObiXV9lChoBmgJaA9DCHIW9rTD1WHAlIaUUpRoFUtMaBZHQCUtxyXD3uh1fZQoaAZoCWgPQwgqxY7GodlawJSGlFKUaBVLWGgWR0AlSc2itaIOdX2UKGgGaAloD0MINSpwsg1sXsCUhpRSlGgVS3FoFkdAJVZTAFgUlHV9lChoBmgJaA9DCCNozCRq1HDAlIaUUpRoFUt0aBZHQCVVjVhCtzV1fZQoaAZoCWgPQwikjLgANGtcwJSGlFKUaBVLS2gWR0AlaCQtBfKIdX2UKGgGaAloD0MIYHe680SHbMCUhpRSlGgVS2loFkdAJYEpqh11XHV9lChoBmgJaA9DCH7iAPr9rmrAlIaUUpRoFUtfaBZHQCWVtdiUgSx1fZQoaAZoCWgPQwjfxJCcTExTwJSGlFKUaBVLQGgWR0Al3b8FY+0PdX2UKGgGaAloD0MIMCk+PiFgd8CUhpRSlGgVS11oFkdAJeJiZv1lG3V9lChoBmgJaA9DCFmis8yi52fAlIaUUpRoFUtHaBZHQCXk4ecQRPJ1fZQoaAZoCWgPQwhjQWFQJjx2wJSGlFKUaBVLZGgWR0AmDMRpUPxydX2UKGgGaAloD0MIebDFbl/5fcCUhpRSlGgVS3hoFkdAJh1t4zJp4HV9lChoBmgJaA9DCCf5Eb/iqWXAlIaUUpRoFUtAaBZHQCYX5HmRvFZ1fZQoaAZoCWgPQwiLwcO0b/ZqwJSGlFKUaBVLdmgWR0AmKiQDFId3dX2UKGgGaAloD0MIs7ES86wTXcCUhpRSlGgVS1RoFkdAJj0rsjVx0nV9lChoBmgJaA9DCC9QUmAB/lbAlIaUUpRoFUtPaBZHQCZdKGtZFG51fZQoaAZoCWgPQwiMZmX7kAFjwJSGlFKUaBVLgWgWR0AmTeO4oZyddX2UKGgGaAloD0MI5NnlW18Fc8CUhpRSlGgVS3xoFkdAJlk3CKrJbXV9lChoBmgJaA9DCKjDCrf8UmnAlIaUUpRoFUtlaBZHQCZpPKuB+Wp1fZQoaAZoCWgPQwhS8BRypTxUwJSGlFKUaBVLeWgWR0Amch24d6sydX2UKGgGaAloD0MI1xLyQQ86csCUhpRSlGgVS31oFkdAJnYwRGtp23V9lChoBmgJaA9DCO5brROXf3nAlIaUUpRoFUtZaBZHQCaSQ9zOopB1fZQoaAZoCWgPQwjq6SPwB2FgwJSGlFKUaBVLeWgWR0Ampp7CzkZKdX2UKGgGaAloD0MIwoh9AiiJZMCUhpRSlGgVS1toFkdAJt/GuLaVU3V9lChoBmgJaA9DCFDkSdI1XFzAlIaUUpRoFUtGaBZHQCbcp9ZzPrx1fZQoaAZoCWgPQwgZcmw9wwFhwJSGlFKUaBVLXWgWR0Am6owVTJhfdX2UKGgGaAloD0MIjUXT2UnbcsCUhpRSlGgVS09oFkdAJv1IiC8OC3V9lChoBmgJaA9DCIRlbOimk3HAlIaUUpRoFUtQaBZHQCbwDV6NVBF1fZQoaAZoCWgPQwg6QZscPkpgwJSGlFKUaBVLXWgWR0Am7gWJrLyMdX2UKGgGaAloD0MIOSaL+48YRMCUhpRSlGgVS0poFkdAJvuG9Htnf3V9lChoBmgJaA9DCIp2FVJ+m1fAlIaUUpRoFUtHaBZHQCcjI3irDIl1fZQoaAZoCWgPQwglzR/T2ppowJSGlFKUaBVLPmgWR0AnHkBCD28JdX2UKGgGaAloD0MI56p5jshnTMCUhpRSlGgVS05oFkdAJ0cRtgrpaHV9lChoBmgJaA9DCGR5Vz1gOnPAlIaUUpRoFUs7aBZHQCdKa9bor4F1fZQoaAZoCWgPQwiRRZp4B5ZhwJSGlFKUaBVLX2gWR0AnWjdpItlJdX2UKGgGaAloD0MIDd/CuvEeYMCUhpRSlGgVS2doFkdAJ3eQ+2VmjHV9lChoBmgJaA9DCLX8wFWemV3AlIaUUpRoFUs3aBZHQCd6gXdj5Kx1fZQoaAZoCWgPQwi366UpQtN7wJSGlFKUaBVLdWgWR0Anh7WNFSbZdX2UKGgGaAloD0MI1XlU/J9Uc8CUhpRSlGgVS3JoFkdAJ6XBHkLhJnV9lChoBmgJaA9DCBpPBHEe9GzAlIaUUpRoFUtpaBZHQCe3+n62v0R1fZQoaAZoCWgPQwjkZU0scHlgwJSGlFKUaBVLTWgWR0AnxmOlwcYJdX2UKGgGaAloD0MIVMiVehaFZcCUhpRSlGgVS1ZoFkdAJ924EwFkhHV9lChoBmgJaA9DCKT6zi/K6GbAlIaUUpRoFUtLaBZHQCf227Wd3B51fZQoaAZoCWgPQwiM9KJ2/+dywJSGlFKUaBVLXmgWR0AoBGXHBDXwdX2UKGgGaAloD0MITYdOz7uOVsCUhpRSlGgVS2poFkdAKAqIznA6+3V9lChoBmgJaA9DCCFcAYV6nXPAlIaUUpRoFUtjaBZHQCgRT0g8r7R1fZQoaAZoCWgPQwhTBg5o6e1gwJSGlFKUaBVLbWgWR0AoHDOTq0MPdX2UKGgGaAloD0MIbNCX3v4/ZMCUhpRSlGgVS0hoFkdAKECwKSgXdnV9lChoBmgJaA9DCOQxA5VxqmvAlIaUUpRoFUtjaBZHQChdLSNOuaF1fZQoaAZoCWgPQwggfCjRko9kwJSGlFKUaBVLV2gWR0AoaKXv6TGHdX2UKGgGaAloD0MIevtz0ZAvZcCUhpRSlGgVS2poFkdAKIDC53C9AXV9lChoBmgJaA9DCMTuO4bHr3fAlIaUUpRoFUuHaBZHQCiZxYJVsDZ1fZQoaAZoCWgPQwjYEByXMaB5wJSGlFKUaBVLgWgWR0AotmknCwbEdX2UKGgGaAloD0MIk9+ik6VCYsCUhpRSlGgVS1FoFkdAKN7SiM5wO3V9lChoBmgJaA9DCE+TGW8rl1nAlIaUUpRoFUtvaBZHQCjhEQXhwVF1fZQoaAZoCWgPQwiWz/I8eEV4wJSGlFKUaBVLeGgWR0Ao29RJmNBGdX2UKGgGaAloD0MIlwLS/ge8UMCUhpRSlGgVS2FoFkdAKPQDNhVlw3V9lChoBmgJaA9DCMYYWMfximLAlIaUUpRoFUt0aBZHQCkCnDR+jM51fZQoaAZoCWgPQwigxVIkH+xwwJSGlFKUaBVLcGgWR0ApCHbh3qzJdX2UKGgGaAloD0MIaDwRxLlEcMCUhpRSlGgVS2VoFkdAKShFuvUz9HV9lChoBmgJaA9DCMRg/goZu2DAlIaUUpRoFUtDaBZHQCki1w5vLox1fZQoaAZoCWgPQwjnUIaqmE5uwJSGlFKUaBVLSmgWR0ApGvDgqEvkdX2UKGgGaAloD0MI1jvcDg1nacCUhpRSlGgVS2loFkdAKTkG7jDKo3V9lChoBmgJaA9DCOQuwhTlnV3AlIaUUpRoFUtMaBZHQClhVU+9rXV1fZQoaAZoCWgPQwj+t5IdG5FcwJSGlFKUaBVLcmgWR0ApZ52Qnx8VdX2UKGgGaAloD0MI3ElE+BfsVcCUhpRSlGgVS4FoFkdAKYW/8EV32XV9lChoBmgJaA9DCMe9+Q2TJ2vAlIaUUpRoFUtbaBZHQCmjk4m1IAh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-lunarlander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43bb714b594111b24671ab0b39772a1ae9a94799dca8a5d2c4ac7fdad01d9e7c
3
+ size 143897
ppo-lunarlander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-lunarlander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcd4e42680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcd4e42710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcd4e427a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcd4e42830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbcd4e428c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbcd4e42950>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcd4e429e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbcd4e42a70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcd4e42b00>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcd4e42b90>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcd4e42c20>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbcd4e970f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 1000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651935603.2733197,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYCe7xxRAs/1gPVPF+pkL924Re9TdBzPQAAAAAAAAAAg8zHPs0ffz8qyXY/y7dTvzC0Ir9ilMu+AAAAAAAAAAC4eQy/+oZfPpPrf79CRc29O4DQP2oMNkAAAAAAAAAAAObk9L46xdk+XOeIv7Fnj78faRo/7SRpPQAAAAAAAAAAzYyJude+sz/Qztm8xoWXvtfxojnmWMU7AAAAAAAAAABApWY+fvm9P8T5MD9qklm+cV6Cvst+XL4AAAAAAAAAAHM5Uj478fk+FnvZPknCqL85s1W/0zTbvgAAAAAAAAAAmg6xvVaBUT9KyTG+O4luv4oNpL2Nolm+AAAAAAAAAABS3Ci/6GabPu76qL9x16S/lSFmPxto6D0AAAAAAAAAALN3g71iuaQ/TN85v8k5Nb/UiXA9uhIaPgAAAAAAAAAAmCKRvpJlrj8CZeu+p2DPvrkQgb58QSm+AAAAAAAAAABTHyU/tCWkPrIuDj9K5pO/P4s2PqXrlT4AAAAAAAAAAABoCr08bYY/IhB/vSH0M7/VgpK9Bp2LvQAAAAAAAAAAM7CHPSp6qz82lMg+medvvtV94b1azhG+AAAAAAAAAACmCNO9K3GjP7pv/75fh/u+zcBxPXlWCjsAAAAAAAAAAKiqob6D/9Y+gyxEv8sDk7/yMv4+P5FBPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -15.384,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1a90Prz/ZMCUhpRSlIwBbJRLTowBdJRHQCJtEb5uZTh1fZQoaAZoCWgPQwi5MxMM59JmwJSGlFKUaBVLP2gWR0Ai/w2ETQE7dX2UKGgGaAloD0MItOkI4GbJWcCUhpRSlGgVS1doFkdAIxgIQe3hGnV9lChoBmgJaA9DCChGlswx/W3AlIaUUpRoFUtQaBZHQCNOuPmxMWZ1fZQoaAZoCWgPQwjVyoRf6i9rwJSGlFKUaBVLZWgWR0AjRcer+5vtdX2UKGgGaAloD0MIWYgOgaN0dcCUhpRSlGgVS2ZoFkdAI0T41xbSqnV9lChoBmgJaA9DCJONB1ts1mPAlIaUUpRoFUtpaBZHQCNsrAgxJul1fZQoaAZoCWgPQwg4Z0Rp7w1jwJSGlFKUaBVLX2gWR0AjqF/QSi/PdX2UKGgGaAloD0MI9Z1flKCda8CUhpRSlGgVS1toFkdAI9AGbCrLhnV9lChoBmgJaA9DCGvUQzT6EXrAlIaUUpRoFUteaBZHQCPoJTl1bJR1fZQoaAZoCWgPQwgXEcXkzTBwwJSGlFKUaBVLi2gWR0Aj3BEa2nbZdX2UKGgGaAloD0MI58jKL4OvW8CUhpRSlGgVS2JoFkdAJAUulGgBcXV9lChoBmgJaA9DCBgLQ+R0imvAlIaUUpRoFUtuaBZHQCQPj6vaDf51fZQoaAZoCWgPQwjXhopx/sdzwJSGlFKUaBVLWmgWR0AkDzkp7TlUdX2UKGgGaAloD0MIXtkFg+tWc8CUhpRSlGgVS15oFkdAJAru6VdHD3V9lChoBmgJaA9DCCYapOApwlDAlIaUUpRoFUs9aBZHQCQivC/Glyl1fZQoaAZoCWgPQwh9I7pn3QNiwJSGlFKUaBVLQGgWR0AkKd7OVxCIdX2UKGgGaAloD0MIpmQ5CaXfW8CUhpRSlGgVS15oFkdAJDSoGY8dP3V9lChoBmgJaA9DCCFYVS+/61TAlIaUUpRoFUtJaBZHQCRPFglWwNd1fZQoaAZoCWgPQwgIlE25gk9wwJSGlFKUaBVLcGgWR0AkVefI0ZWJdX2UKGgGaAloD0MIU82spYCGWsCUhpRSlGgVSztoFkdAJFWphnanJnV9lChoBmgJaA9DCGpLHeT1lVXAlIaUUpRoFUtRaBZHQCRVV7x/d691fZQoaAZoCWgPQwhihPBoY09mwJSGlFKUaBVLWmgWR0AkhRm9QGfPdX2UKGgGaAloD0MIVi3pKAdvUMCUhpRSlGgVS2poFkdAJIz2WY4Qz3V9lChoBmgJaA9DCLyQDg9h0FnAlIaUUpRoFUtPaBZHQCTLhky1uzh1fZQoaAZoCWgPQwh9lufB3S5ZwJSGlFKUaBVLSmgWR0Ak3mEGqxTsdX2UKGgGaAloD0MIWqFI93PPWsCUhpRSlGgVS1poFkdAJOFhgE2YOXV9lChoBmgJaA9DCIZXkjzXI3rAlIaUUpRoFUtfaBZHQCTkKeCkGiZ1fZQoaAZoCWgPQwiOW8zPDUZYwJSGlFKUaBVLRGgWR0Ak9uAI6bONdX2UKGgGaAloD0MI/+kGCrwkYMCUhpRSlGgVS0toFkdAJPmig00m+nV9lChoBmgJaA9DCG3F/rI7JXfAlIaUUpRoFUtaaBZHQCUSt5le4Td1fZQoaAZoCWgPQwhmM4ekFhVTwJSGlFKUaBVLRWgWR0AlGb8WKuSwdX2UKGgGaAloD0MIz9ptF9o7dcCUhpRSlGgVS1doFkdAJSAAyVObiXV9lChoBmgJaA9DCHIW9rTD1WHAlIaUUpRoFUtMaBZHQCUtxyXD3uh1fZQoaAZoCWgPQwgqxY7GodlawJSGlFKUaBVLWGgWR0AlSc2itaIOdX2UKGgGaAloD0MINSpwsg1sXsCUhpRSlGgVS3FoFkdAJVZTAFgUlHV9lChoBmgJaA9DCCNozCRq1HDAlIaUUpRoFUt0aBZHQCVVjVhCtzV1fZQoaAZoCWgPQwikjLgANGtcwJSGlFKUaBVLS2gWR0AlaCQtBfKIdX2UKGgGaAloD0MIYHe680SHbMCUhpRSlGgVS2loFkdAJYEpqh11XHV9lChoBmgJaA9DCH7iAPr9rmrAlIaUUpRoFUtfaBZHQCWVtdiUgSx1fZQoaAZoCWgPQwjfxJCcTExTwJSGlFKUaBVLQGgWR0Al3b8FY+0PdX2UKGgGaAloD0MIMCk+PiFgd8CUhpRSlGgVS11oFkdAJeJiZv1lG3V9lChoBmgJaA9DCFmis8yi52fAlIaUUpRoFUtHaBZHQCXk4ecQRPJ1fZQoaAZoCWgPQwhjQWFQJjx2wJSGlFKUaBVLZGgWR0AmDMRpUPxydX2UKGgGaAloD0MIebDFbl/5fcCUhpRSlGgVS3hoFkdAJh1t4zJp4HV9lChoBmgJaA9DCCf5Eb/iqWXAlIaUUpRoFUtAaBZHQCYX5HmRvFZ1fZQoaAZoCWgPQwiLwcO0b/ZqwJSGlFKUaBVLdmgWR0AmKiQDFId3dX2UKGgGaAloD0MIs7ES86wTXcCUhpRSlGgVS1RoFkdAJj0rsjVx0nV9lChoBmgJaA9DCC9QUmAB/lbAlIaUUpRoFUtPaBZHQCZdKGtZFG51fZQoaAZoCWgPQwiMZmX7kAFjwJSGlFKUaBVLgWgWR0AmTeO4oZyddX2UKGgGaAloD0MI5NnlW18Fc8CUhpRSlGgVS3xoFkdAJlk3CKrJbXV9lChoBmgJaA9DCKjDCrf8UmnAlIaUUpRoFUtlaBZHQCZpPKuB+Wp1fZQoaAZoCWgPQwhS8BRypTxUwJSGlFKUaBVLeWgWR0Amch24d6sydX2UKGgGaAloD0MI1xLyQQ86csCUhpRSlGgVS31oFkdAJnYwRGtp23V9lChoBmgJaA9DCO5brROXf3nAlIaUUpRoFUtZaBZHQCaSQ9zOopB1fZQoaAZoCWgPQwjq6SPwB2FgwJSGlFKUaBVLeWgWR0Ampp7CzkZKdX2UKGgGaAloD0MIwoh9AiiJZMCUhpRSlGgVS1toFkdAJt/GuLaVU3V9lChoBmgJaA9DCFDkSdI1XFzAlIaUUpRoFUtGaBZHQCbcp9ZzPrx1fZQoaAZoCWgPQwgZcmw9wwFhwJSGlFKUaBVLXWgWR0Am6owVTJhfdX2UKGgGaAloD0MIjUXT2UnbcsCUhpRSlGgVS09oFkdAJv1IiC8OC3V9lChoBmgJaA9DCIRlbOimk3HAlIaUUpRoFUtQaBZHQCbwDV6NVBF1fZQoaAZoCWgPQwg6QZscPkpgwJSGlFKUaBVLXWgWR0Am7gWJrLyMdX2UKGgGaAloD0MIOSaL+48YRMCUhpRSlGgVS0poFkdAJvuG9Htnf3V9lChoBmgJaA9DCIp2FVJ+m1fAlIaUUpRoFUtHaBZHQCcjI3irDIl1fZQoaAZoCWgPQwglzR/T2ppowJSGlFKUaBVLPmgWR0AnHkBCD28JdX2UKGgGaAloD0MI56p5jshnTMCUhpRSlGgVS05oFkdAJ0cRtgrpaHV9lChoBmgJaA9DCGR5Vz1gOnPAlIaUUpRoFUs7aBZHQCdKa9bor4F1fZQoaAZoCWgPQwiRRZp4B5ZhwJSGlFKUaBVLX2gWR0AnWjdpItlJdX2UKGgGaAloD0MIDd/CuvEeYMCUhpRSlGgVS2doFkdAJ3eQ+2VmjHV9lChoBmgJaA9DCLX8wFWemV3AlIaUUpRoFUs3aBZHQCd6gXdj5Kx1fZQoaAZoCWgPQwi366UpQtN7wJSGlFKUaBVLdWgWR0Anh7WNFSbZdX2UKGgGaAloD0MI1XlU/J9Uc8CUhpRSlGgVS3JoFkdAJ6XBHkLhJnV9lChoBmgJaA9DCBpPBHEe9GzAlIaUUpRoFUtpaBZHQCe3+n62v0R1fZQoaAZoCWgPQwjkZU0scHlgwJSGlFKUaBVLTWgWR0AnxmOlwcYJdX2UKGgGaAloD0MIVMiVehaFZcCUhpRSlGgVS1ZoFkdAJ924EwFkhHV9lChoBmgJaA9DCKT6zi/K6GbAlIaUUpRoFUtLaBZHQCf227Wd3B51fZQoaAZoCWgPQwiM9KJ2/+dywJSGlFKUaBVLXmgWR0AoBGXHBDXwdX2UKGgGaAloD0MITYdOz7uOVsCUhpRSlGgVS2poFkdAKAqIznA6+3V9lChoBmgJaA9DCCFcAYV6nXPAlIaUUpRoFUtjaBZHQCgRT0g8r7R1fZQoaAZoCWgPQwhTBg5o6e1gwJSGlFKUaBVLbWgWR0AoHDOTq0MPdX2UKGgGaAloD0MIbNCX3v4/ZMCUhpRSlGgVS0hoFkdAKECwKSgXdnV9lChoBmgJaA9DCOQxA5VxqmvAlIaUUpRoFUtjaBZHQChdLSNOuaF1fZQoaAZoCWgPQwggfCjRko9kwJSGlFKUaBVLV2gWR0AoaKXv6TGHdX2UKGgGaAloD0MIevtz0ZAvZcCUhpRSlGgVS2poFkdAKIDC53C9AXV9lChoBmgJaA9DCMTuO4bHr3fAlIaUUpRoFUuHaBZHQCiZxYJVsDZ1fZQoaAZoCWgPQwjYEByXMaB5wJSGlFKUaBVLgWgWR0AotmknCwbEdX2UKGgGaAloD0MIk9+ik6VCYsCUhpRSlGgVS1FoFkdAKN7SiM5wO3V9lChoBmgJaA9DCE+TGW8rl1nAlIaUUpRoFUtvaBZHQCjhEQXhwVF1fZQoaAZoCWgPQwiWz/I8eEV4wJSGlFKUaBVLeGgWR0Ao29RJmNBGdX2UKGgGaAloD0MIlwLS/ge8UMCUhpRSlGgVS2FoFkdAKPQDNhVlw3V9lChoBmgJaA9DCMYYWMfximLAlIaUUpRoFUt0aBZHQCkCnDR+jM51fZQoaAZoCWgPQwigxVIkH+xwwJSGlFKUaBVLcGgWR0ApCHbh3qzJdX2UKGgGaAloD0MIaDwRxLlEcMCUhpRSlGgVS2VoFkdAKShFuvUz9HV9lChoBmgJaA9DCMRg/goZu2DAlIaUUpRoFUtDaBZHQCki1w5vLox1fZQoaAZoCWgPQwjnUIaqmE5uwJSGlFKUaBVLSmgWR0ApGvDgqEvkdX2UKGgGaAloD0MI1jvcDg1nacCUhpRSlGgVS2loFkdAKTkG7jDKo3V9lChoBmgJaA9DCOQuwhTlnV3AlIaUUpRoFUtMaBZHQClhVU+9rXV1fZQoaAZoCWgPQwj+t5IdG5FcwJSGlFKUaBVLcmgWR0ApZ52Qnx8VdX2UKGgGaAloD0MI3ElE+BfsVcCUhpRSlGgVS4FoFkdAKYW/8EV32XV9lChoBmgJaA9DCMe9+Q2TJ2vAlIaUUpRoFUtbaBZHQCmjk4m1IAh1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-lunarlander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:115c19eec1edf0964de4a5e9289397293533ee12091ca12845a8a5a4d8ffeda4
3
+ size 84829
ppo-lunarlander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27d3d472eb5616fcb32c593ced7c28b24bb0bb988069bc251dd212efa7843ca9
3
+ size 43201
ppo-lunarlander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-lunarlander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d164f776c402c29e8a4645839fa75c061e0d17be7ac08efa4f1ca9052b338ad8
3
+ size 160185
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -146.15007383483461, "std_reward": 29.7657543677026, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T15:00:27.825953"}