{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f48b48d5750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48b48d57e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48b48d5870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48b48d5900>", "_build": "<function ActorCriticPolicy._build at 0x7f48b48d5990>", "forward": "<function ActorCriticPolicy.forward at 0x7f48b48d5a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f48b48d5ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48b48d5b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f48b48d5bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48b48d5c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48b48d5cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48b48d5d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f48b48e8340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684093156695198054, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPLeDspsEW6/HgtOpRYf7YFxcC6bTmBtQAAgD8AAIA/mssTPiri0j4qlK26OoKlvvmkfT0NjNw9AAAAAAAAAACAAuK9w0lYuoJFtrvGDFg4+jVlO9bb3jcAAIA/AAAAAG3sG7622DY/O/vAvYBux75dpZe9nf5LOwAAAAAAAAAAAJCMPI+yG7rrgp67MbZcOHFqMTt4zHQ4AACAPwAAgD9NMio9romculO8+Tn6Isu1eK2/ugLXD7kAAIA/AACAP2ahUz2kcBC5g/diu0RKz7b4C9I7MqCHOgAAgD8AAIA/M+SivApdEbs3XaY8A+OFPN07ujt9iGi9AACAPwAAgD8zxvo8H+WQuYUz0beaiVkwemHBuw1C+DYAAIA/AACAPwAUjjsUvJy6wtqNOvPOsTWArFs6w66iuQAAgD8AAIA/GoUyPUgzk7qKNya6RAQWteC7+Dj2i0A5AACAPwAAgD9TkYs+c2NbP5pk6z2+kq6+NyY6Ptu7vr0AAAAAAAAAAGYWnT2P3k+6tfzqvIJsb7XQgk67MyPiNAAAAAAAAAAAwASFPfb0R7qG+Dm8g1s6NsTzBrmBPau1AACAPwAAgD9zFKQ9KUBqup3m7Lp+VVi2tQ9eO5YRCToAAIA/AAAAAIDsjj32BCy6c6huOrWn5zW1v186DV2LuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+mG+K0lZ6MAWyUTegDjAF0lEdAlG55yIYWL3V9lChoBkdAOYvOhTOxB2gHTQ4BaAhHQJR2ORr8BMl1fZQoaAZHQGY1+/pMYdhoB03oA2gIR0CUg8cN6PbPdX2UKGgGR0Bkt5Fb3XZoaAdN6ANoCEdAlIVrADaGpXV9lChoBkdAYzYZ5zHS4WgHTegDaAhHQJSGITufEn91fZQoaAZHQGPX2ZqmCRRoB03oA2gIR0CUhv63RXwLdX2UKGgGR0BgtgV45cTraAdN6ANoCEdAlIcLs0HhTHV9lChoBkdAZCwnGbTc7GgHTegDaAhHQJSHuxmkFfR1fZQoaAZHQGD9VtO2y9poB03oA2gIR0CUpLE7W/ahdX2UKGgGR0BoU8PatcOcaAdN6ANoCEdAlKa4sunMuHV9lChoBkdAZHo9ugpSaWgHTegDaAhHQJSyNR1oxpN1fZQoaAZHQGfUTVc2R7toB03oA2gIR0CUs3Bl+VkddX2UKGgGR0BiGRnSOR1YaAdN6ANoCEdAlLebf51vEXV9lChoBkdAX0d8stkFwGgHTegDaAhHQJS4ZQYUFjd1fZQoaAZHQFqBx8D0UXZoB03oA2gIR0CUuH1BMSK4dX2UKGgGR0Bh9VLDhtLtaAdN6ANoCEdAlLkd9ph4MXV9lChoBkdAZE4RUWEbpGgHTegDaAhHQJS8GLhrFfl1fZQoaAZHwDC0xqO938poB0v3aAhHQJS/uEi+tbN1fZQoaAZHQGKCy925hBtoB03oA2gIR0CUwhXgccU/dX2UKGgGR0A0los7MgU2aAdL4WgIR0CUw4JC0F8pdX2UKGgGR0BhFBIMBp6AaAdN6ANoCEdAlM3T/MnqmnV9lChoBkdAZYK5ggHNYGgHTegDaAhHQJTPbOKO1fF1fZQoaAZHQGOCPf8/D+BoB03oA2gIR0CU0BvfCQ9zdX2UKGgGR0BjwLTYukDZaAdN6ANoCEdAlND/QBxPwnV9lChoBkdAYF7bGFSKnGgHTegDaAhHQJTRDKifxtp1fZQoaAZHQF3kLRa5f+loB03oA2gIR0CU0dDUmUnpdX2UKGgGR0BldYsbvPToaAdN6ANoCEdAlPUoW1twaXV9lChoBkdAYoy99MK1HGgHTegDaAhHQJT291xKg7J1fZQoaAZHQGIrpy6tknVoB03oA2gIR0CVAL81Gb1AdX2UKGgGR0BnzBNEgGKRaAdN6ANoCEdAlQTMUAT7EnV9lChoBkdAY7o+L3sXzmgHTegDaAhHQJUFwfCAMDx1fZQoaAZHQGaymMwUQCloB03oA2gIR0CVBrKSgXdkdX2UKGgGR0A9wW56MR6GaAdNFAFoCEdAlQbhPwd8zHV9lChoBkdASVUtNBWxQmgHTRkBaAhHQJUInMOf/WF1fZQoaAZHQGDJS619fC1oB03oA2gIR0CVCjPEKmbcdX2UKGgGR0BjU72HtWuHaAdN6ANoCEdAlQ39NWU8m3V9lChoBkdAY5Zjebd8A2gHTegDaAhHQJUQStCAtnR1fZQoaAZHQF3QrRjSXt1oB03oA2gIR0CVEbO6d1+zdX2UKGgGR0BJtsrmQr+YaAdL8mgIR0CVEz/C66J7dX2UKGgGR0AGOetjkMkQaAdNBQFoCEdAlRYaIeo1k3V9lChoBkdAb1u1NxlxwWgHTSwBaAhHQJUWe5SWJJp1fZQoaAZHQGEIHn+yZ8doB03oA2gIR0CVHLmK64DtdX2UKGgGR0BiEdMwlByCaAdN6ANoCEdAlR6sMZxaPnV9lChoBkdAYYkjlgc94mgHTegDaAhHQJUfgIKMNtt1fZQoaAZHQFnOez2OAAhoB03oA2gIR0CVIJ6u4gA7dX2UKGgGR0BjpKA4GUwBaAdN6ANoCEdAlSCyXpnpS3V9lChoBkdAVsZ1jiGWU2gHTegDaAhHQJUhkYqG1x91fZQoaAZHQGSu6s6q815oB03oA2gIR0CVTHUornTzdX2UKGgGR0BlUBBomG/OaAdN6ANoCEdAlVBz101ZT3V9lChoBkdAYCfgx8D0UWgHTegDaAhHQJVRZaSs8xN1fZQoaAZHQGRpa0QbuMNoB03oA2gIR0CVV7j2SMcZdX2UKGgGR0BocVar3j+8aAdN6ANoCEdAlV1iYTj//HV9lChoBkdAZUK6J66as2gHTegDaAhHQJVg1jSXt0F1fZQoaAZHQGLCjjJdSl5oB03oA2gIR0CVYvPjn3cpdX2UKGgGR0BgrWT9sJpnaAdN6ANoCEdAlWSqUNayKXV9lChoBkdAY36bYsd1dWgHTegDaAhHQJVnWFdszl91fZQoaAZHQGWAh+nZTQ5oB03oA2gIR0CVZ7QiRnvldX2UKGgGR0BluzwlSjxkaAdN6ANoCEdAlWw2NrCWNXV9lChoBkdAZJx/5tWMj2gHTegDaAhHQJVtonRb8m91fZQoaAZHQGLKE4NqgyxoB03oA2gIR0CVbju7pV0cdX2UKGgGR0BfqhiTdLxqaAdN6ANoCEdAlW8GVu76HnV9lChoBkdAZEobEP1+RmgHTegDaAhHQJVvFSNwR5F1fZQoaAZHQGCHF7laKUFoB03oA2gIR0CVb775mAbydX2UKGgGR0BMb8pkPMB7aAdNAAFoCEdAlXOr0WdmQXV9lChoBkdAQs0yHmA9V2gHTRcBaAhHQJWL99Ujs2N1fZQoaAZHQGVP6P0Zm7JoB03oA2gIR0CVm+9vS+g2dX2UKGgGR0Bi8MBGQSzxaAdN6ANoCEdAlaBpLEk0JnV9lChoBkdAYAkhnJ1aGGgHTegDaAhHQJWhVYLb5/N1fZQoaAZHQGT7DM3ZPEdoB03oA2gIR0CVpjhnrY5DdX2UKGgGR0BkfsqvvBrOaAdN6ANoCEdAlarQdXDFZXV9lChoBkdAYTBDQZ4wAWgHTegDaAhHQJWtYUN8VpN1fZQoaAZHQGeMoH9m6GxoB03oA2gIR0CVrvlCkXUIdX2UKGgGR0BkZN7BwdbQaAdN6ANoCEdAlbCbytmthnV9lChoBkdAR+CBXjlxO2gHS+FoCEdAlbMECNjslnV9lChoBkdAY6WqR2bG3mgHTegDaAhHQJWzRWV/tpp1fZQoaAZHQGNUEGiYb85oB03oA2gIR0CVt/QQ+UyIdX2UKGgGR0BhD6Cz1K5DaAdN6ANoCEdAlblFwT/Q0HV9lChoBkdAZHBaaCtihGgHTegDaAhHQJW52+xnnMd1fZQoaAZHQGIdHJcPe55oB03oA2gIR0CVupxqfvnbdX2UKGgGR0Bg4pc/t6X0aAdN6ANoCEdAlbtP8IiTuHV9lChoBkdAZMbC2tuDSWgHTegDaAhHQJW/pNTLns91fZQoaAZHQCb2I2wV0tBoB0v+aAhHQJXEcCIUJv51fZQoaAZHQEThrHlwLmZoB0vtaAhHQJXE/8UEgW91fZQoaAZHQGQ7fdqL0jFoB03oA2gIR0CV3Z/VRUFTdX2UKGgGR0Bj++EmICU5aAdN6ANoCEdAlehS/9Hc13V9lChoBkdAQod2JSBK+WgHS+BoCEdAletFUhmoSHV9lChoBkdAYkVCSA6Mi2gHTegDaAhHQJXsWHvc8DB1fZQoaAZHQGNi5U1hsqJoB03oA2gIR0CV7TfQrtmddX2UKGgGR0Bn4qJTER8MaAdN6ANoCEdAlfX7fDUExXV9lChoBkdAYveJLM9r42gHTegDaAhHQJX4ih+OOsF1fZQoaAZHQF3wv8IiTt9oB03oA2gIR0CV+h+b3Gn5dX2UKGgGR0BbFnjlxOtXaAdN6ANoCEdAlfvVRxcVxnV9lChoBkdAZUIOZLIxQGgHTegDaAhHQJX+nzxwyZd1fZQoaAZHQGDqg/LTx5NoB03oA2gIR0CV/uis4ku6dX2UKGgGR0BeIM1O0svqaAdN6ANoCEdAlgnOx8lXzXV9lChoBkdAY4eelKsdUGgHTegDaAhHQJYLTaDf3vh1fZQoaAZHQGQf/t6X0GxoB03oA2gIR0CWDIw0fozOdX2UKGgGR0BhtSH9FWn1aAdN6ANoCEdAlhNHQID5kHV9lChoBkdAYD5Nr0rbxmgHTegDaAhHQJYYhIqbz9V1fZQoaAZHQGQld7OVxCJoB03oA2gIR0CWGR6guh9LdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |