Lemswasabi commited on
Commit
aebfb31
·
1 Parent(s): 0b676c8

Training in progress, step 500

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 55, "</s>": 56}
config.json ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Lemswasabi/letzspeak",
3
+ "activation_dropout": 0.1,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.0,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.0,
57
+ "hidden_size": 1024,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 4096,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.0,
62
+ "mask_channel_length": 10,
63
+ "mask_channel_min_space": 1,
64
+ "mask_channel_other": 0.0,
65
+ "mask_channel_prob": 0.0,
66
+ "mask_channel_selection": "static",
67
+ "mask_feature_length": 64,
68
+ "mask_feature_min_masks": 0,
69
+ "mask_feature_prob": 0.25,
70
+ "mask_time_length": 10,
71
+ "mask_time_min_masks": 2,
72
+ "mask_time_min_space": 1,
73
+ "mask_time_other": 0.0,
74
+ "mask_time_prob": 0.75,
75
+ "mask_time_selection": "static",
76
+ "model_type": "wav2vec2",
77
+ "num_adapter_layers": 3,
78
+ "num_attention_heads": 16,
79
+ "num_codevector_groups": 2,
80
+ "num_codevectors_per_group": 320,
81
+ "num_conv_pos_embedding_groups": 16,
82
+ "num_conv_pos_embeddings": 128,
83
+ "num_feat_extract_layers": 7,
84
+ "num_hidden_layers": 24,
85
+ "num_negatives": 100,
86
+ "output_hidden_size": 1024,
87
+ "pad_token_id": 54,
88
+ "proj_codevector_dim": 768,
89
+ "tdnn_dilation": [
90
+ 1,
91
+ 2,
92
+ 3,
93
+ 1,
94
+ 1
95
+ ],
96
+ "tdnn_dim": [
97
+ 512,
98
+ 512,
99
+ 512,
100
+ 512,
101
+ 1500
102
+ ],
103
+ "tdnn_kernel": [
104
+ 5,
105
+ 3,
106
+ 3,
107
+ 1,
108
+ 1
109
+ ],
110
+ "torch_dtype": "float32",
111
+ "transformers_version": "4.20.0.dev0",
112
+ "use_weighted_layer_sum": false,
113
+ "vocab_size": 57,
114
+ "xvector_output_dim": 512
115
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bf3450437839a6b9c9bc68a5ee2f1c4182eb42cec37c4ad7d69455bcc389e2c
3
+ size 1262132401
run.sh ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="/home/mistergreen/corpus/tuudle/" \
3
+ --model_name_or_path="Lemswasabi/letzspeak" \
4
+ --dataset_config_name="rtl" \
5
+ --train_split_name="train" \
6
+ --eval_split_name="validation" \
7
+ --output_dir="./" \
8
+ --overwrite_output_dir \
9
+ --num_train_epochs="50" \
10
+ --per_device_train_batch_size="4" \
11
+ --per_device_eval_batch_size="4" \
12
+ --gradient_accumulation_steps="4" \
13
+ --learning_rate="7.5e-5" \
14
+ --warmup_steps="2000" \
15
+ --length_column_name="input_length" \
16
+ --evaluation_strategy="steps" \
17
+ --text_column_name="sentence" \
18
+ --chars_to_replace \- \
19
+ --chars_to_ignore , ? . ! \; \: \" “ % ‘ „ ” � — ’ … – \
20
+ --save_steps="500" \
21
+ --eval_steps="500" \
22
+ --logging_steps="100" \
23
+ --layerdrop="0.0" \
24
+ --activation_dropout="0.1" \
25
+ --save_total_limit="3" \
26
+ --freeze_feature_encoder \
27
+ --feat_proj_dropout="0.0" \
28
+ --mask_time_prob="0.75" \
29
+ --mask_time_length="10" \
30
+ --mask_feature_prob="0.25" \
31
+ --mask_feature_length="64" \
32
+ --gradient_checkpointing \
33
+ --use_auth_token \
34
+ --fp16 \
35
+ --group_by_length \
36
+ --do_train --do_eval \
37
+ --push_to_hub
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,780 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.20.0.dev0")
53
+
54
+ require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": (
105
+ "Probability of each feature vector along the time axis to be chosen as the start of the vector"
106
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
107
+ "vectors will be masked along the time axis."
108
+ )
109
+ },
110
+ )
111
+ mask_time_length: int = field(
112
+ default=10,
113
+ metadata={"help": "Length of vector span to mask along the time axis."},
114
+ )
115
+ mask_feature_prob: float = field(
116
+ default=0.0,
117
+ metadata={
118
+ "help": (
119
+ "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
120
+ " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
121
+ " bins will be masked along the time axis."
122
+ )
123
+ },
124
+ )
125
+ mask_feature_length: int = field(
126
+ default=10,
127
+ metadata={"help": "Length of vector span to mask along the feature axis."},
128
+ )
129
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
130
+ ctc_loss_reduction: Optional[str] = field(
131
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
132
+ )
133
+
134
+
135
+ @dataclass
136
+ class DataTrainingArguments:
137
+ """
138
+ Arguments pertaining to what data we are going to input our model for training and eval.
139
+
140
+ Using `HfArgumentParser` we can turn this class
141
+ into argparse arguments to be able to specify them on
142
+ the command line.
143
+ """
144
+
145
+ dataset_name: str = field(
146
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
147
+ )
148
+ dataset_config_name: str = field(
149
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
150
+ )
151
+ train_split_name: str = field(
152
+ default="train+validation",
153
+ metadata={
154
+ "help": (
155
+ "The name of the training data set split to use (via the datasets library). Defaults to "
156
+ "'train+validation'"
157
+ )
158
+ },
159
+ )
160
+ eval_split_name: str = field(
161
+ default="test",
162
+ metadata={
163
+ "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
164
+ },
165
+ )
166
+ audio_column_name: str = field(
167
+ default="audio",
168
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
169
+ )
170
+ text_column_name: str = field(
171
+ default="text",
172
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
173
+ )
174
+ overwrite_cache: bool = field(
175
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
176
+ )
177
+ preprocessing_num_workers: Optional[int] = field(
178
+ default=None,
179
+ metadata={"help": "The number of processes to use for the preprocessing."},
180
+ )
181
+ max_train_samples: Optional[int] = field(
182
+ default=None,
183
+ metadata={
184
+ "help": (
185
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
186
+ "value if set."
187
+ )
188
+ },
189
+ )
190
+ max_eval_samples: Optional[int] = field(
191
+ default=None,
192
+ metadata={
193
+ "help": (
194
+ "For debugging purposes or quicker training, truncate the number of validation examples to this "
195
+ "value if set."
196
+ )
197
+ },
198
+ )
199
+ chars_to_ignore: Optional[List[str]] = list_field(
200
+ default=None,
201
+ metadata={"help": "A list of characters to remove from the transcripts."},
202
+ )
203
+ chars_to_replace: Optional[List[str]] = list_field(
204
+ default=None,
205
+ metadata={"help": "A list of characters to replace from the transcripts."},
206
+ )
207
+ eval_metrics: List[str] = list_field(
208
+ default=["wer"],
209
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
210
+ )
211
+ max_duration_in_seconds: float = field(
212
+ default=20.0,
213
+ metadata={
214
+ "help": (
215
+ "Filter audio files that are longer than `max_duration_in_seconds` seconds to"
216
+ " 'max_duration_in_seconds`"
217
+ )
218
+ },
219
+ )
220
+ min_duration_in_seconds: float = field(
221
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
222
+ )
223
+ preprocessing_only: bool = field(
224
+ default=False,
225
+ metadata={
226
+ "help": (
227
+ "Whether to only do data preprocessing and skip training. This is especially useful when data"
228
+ " preprocessing errors out in distributed training due to timeout. In this case, one should run the"
229
+ " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
230
+ " can consequently be loaded in distributed training"
231
+ )
232
+ },
233
+ )
234
+ use_auth_token: bool = field(
235
+ default=False,
236
+ metadata={
237
+ "help": (
238
+ "If :obj:`True`, will use the token generated when running"
239
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
240
+ )
241
+ },
242
+ )
243
+ unk_token: str = field(
244
+ default="[UNK]",
245
+ metadata={"help": "The unk token for the tokenizer"},
246
+ )
247
+ pad_token: str = field(
248
+ default="[PAD]",
249
+ metadata={"help": "The padding token for the tokenizer"},
250
+ )
251
+ word_delimiter_token: str = field(
252
+ default="|",
253
+ metadata={"help": "The word delimiter token for the tokenizer"},
254
+ )
255
+ phoneme_language: Optional[str] = field(
256
+ default=None,
257
+ metadata={
258
+ "help": (
259
+ "The target language that should be used be"
260
+ " passed to the tokenizer for tokenization. Note that"
261
+ " this is only relevant if the model classifies the"
262
+ " input audio to a sequence of phoneme sequences."
263
+ )
264
+ },
265
+ )
266
+
267
+
268
+ @dataclass
269
+ class DataCollatorCTCWithPadding:
270
+ """
271
+ Data collator that will dynamically pad the inputs received.
272
+ Args:
273
+ processor (:class:`~transformers.AutoProcessor`)
274
+ The processor used for proccessing the data.
275
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
276
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
277
+ among:
278
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
279
+ sequence if provided).
280
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
281
+ maximum acceptable input length for the model if that argument is not provided.
282
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
283
+ different lengths).
284
+ max_length (:obj:`int`, `optional`):
285
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
286
+ max_length_labels (:obj:`int`, `optional`):
287
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
288
+ pad_to_multiple_of (:obj:`int`, `optional`):
289
+ If set will pad the sequence to a multiple of the provided value.
290
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
291
+ 7.5 (Volta).
292
+ """
293
+
294
+ processor: AutoProcessor
295
+ padding: Union[bool, str] = "longest"
296
+ pad_to_multiple_of: Optional[int] = None
297
+ pad_to_multiple_of_labels: Optional[int] = None
298
+
299
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
300
+ # split inputs and labels since they have to be of different lenghts and need
301
+ # different padding methods
302
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
303
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
304
+
305
+ batch = self.processor.pad(
306
+ input_features,
307
+ padding=self.padding,
308
+ pad_to_multiple_of=self.pad_to_multiple_of,
309
+ return_tensors="pt",
310
+ )
311
+
312
+ with self.processor.as_target_processor():
313
+ labels_batch = self.processor.pad(
314
+ label_features,
315
+ padding=self.padding,
316
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
317
+ return_tensors="pt",
318
+ )
319
+
320
+ # replace padding with -100 to ignore loss correctly
321
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
322
+
323
+ batch["labels"] = labels
324
+
325
+ return batch
326
+
327
+
328
+ def create_vocabulary_from_data(
329
+ datasets: DatasetDict,
330
+ word_delimiter_token: Optional[str] = None,
331
+ unk_token: Optional[str] = None,
332
+ pad_token: Optional[str] = None,
333
+ ):
334
+ # Given training and test labels create vocabulary
335
+ def extract_all_chars(batch):
336
+ all_text = " ".join(batch["target_text"])
337
+ vocab = list(set(all_text))
338
+ return {"vocab": [vocab], "all_text": [all_text]}
339
+
340
+ vocabs = datasets.map(
341
+ extract_all_chars,
342
+ batched=True,
343
+ batch_size=-1,
344
+ keep_in_memory=True,
345
+ remove_columns=datasets["train"].column_names,
346
+ )
347
+
348
+ # take union of all unique characters in each dataset
349
+ vocab_set = functools.reduce(
350
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
351
+ )
352
+
353
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
354
+
355
+ # replace white space with delimiter token
356
+ if word_delimiter_token is not None:
357
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
358
+ del vocab_dict[" "]
359
+
360
+ # add unk and pad token
361
+ if unk_token is not None:
362
+ vocab_dict[unk_token] = len(vocab_dict)
363
+
364
+ if pad_token is not None:
365
+ vocab_dict[pad_token] = len(vocab_dict)
366
+
367
+ return vocab_dict
368
+
369
+
370
+ def main():
371
+ # See all possible arguments in src/transformers/training_args.py
372
+ # or by passing the --help flag to this script.
373
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
374
+
375
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
376
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
377
+ # If we pass only one argument to the script and it's the path to a json file,
378
+ # let's parse it to get our arguments.
379
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
380
+ else:
381
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
382
+
383
+ # Detecting last checkpoint.
384
+ last_checkpoint = None
385
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
386
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
387
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
388
+ raise ValueError(
389
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
390
+ "Use --overwrite_output_dir to overcome."
391
+ )
392
+ elif last_checkpoint is not None:
393
+ logger.info(
394
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
395
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
396
+ )
397
+
398
+ # Setup logging
399
+ logging.basicConfig(
400
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
401
+ datefmt="%m/%d/%Y %H:%M:%S",
402
+ handlers=[logging.StreamHandler(sys.stdout)],
403
+ )
404
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
405
+
406
+ # Log on each process the small summary:
407
+ logger.warning(
408
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
409
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
410
+ )
411
+ # Set the verbosity to info of the Transformers logger (on main process only):
412
+ if is_main_process(training_args.local_rank):
413
+ transformers.utils.logging.set_verbosity_info()
414
+ logger.info("Training/evaluation parameters %s", training_args)
415
+
416
+ # Set seed before initializing model.
417
+ set_seed(training_args.seed)
418
+
419
+ # 1. First, let's load the dataset
420
+ raw_datasets = DatasetDict()
421
+
422
+ if training_args.do_train:
423
+ raw_datasets["train"] = load_dataset(
424
+ data_args.dataset_name,
425
+ data_args.dataset_config_name,
426
+ split=data_args.train_split_name,
427
+ use_auth_token=data_args.use_auth_token,
428
+ )
429
+
430
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
431
+ raise ValueError(
432
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
433
+ " Make sure to set `--audio_column_name` to the correct audio column - one of"
434
+ f" {', '.join(raw_datasets['train'].column_names)}."
435
+ )
436
+
437
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
438
+ raise ValueError(
439
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
440
+ "Make sure to set `--text_column_name` to the correct text column - one of "
441
+ f"{', '.join(raw_datasets['train'].column_names)}."
442
+ )
443
+
444
+ if data_args.max_train_samples is not None:
445
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
446
+
447
+ if training_args.do_eval:
448
+ raw_datasets["eval"] = load_dataset(
449
+ data_args.dataset_name,
450
+ data_args.dataset_config_name,
451
+ split=data_args.eval_split_name,
452
+ use_auth_token=data_args.use_auth_token,
453
+ )
454
+
455
+ if data_args.max_eval_samples is not None:
456
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
457
+
458
+ # 2. We remove some special characters from the datasets
459
+ # that make training complicated and do not help in transcribing the speech
460
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
461
+ # that could be easily picked up by the model
462
+ chars_to_replace_regex = (
463
+ f'[{"".join(data_args.chars_to_replace)}]' if data_args.chars_to_replace is not None else None
464
+ )
465
+ chars_to_ignore_regex = (
466
+ f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
467
+ )
468
+ text_column_name = data_args.text_column_name
469
+
470
+ def replace_special_characters(batch):
471
+ if chars_to_replace_regex is not None:
472
+ batch[text_column_name] = re.sub(chars_to_replace_regex, " ", batch[text_column_name]).lower() + " "
473
+ else:
474
+ batch[text_column_name] = batch[text_column_name].lower() + " "
475
+ return batch
476
+
477
+ def remove_special_characters(batch):
478
+ if chars_to_ignore_regex is not None:
479
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
480
+ else:
481
+ batch["target_text"] = batch[text_column_name].lower() + " "
482
+ return batch
483
+
484
+ with training_args.main_process_first(desc="dataset map special characters removal"):
485
+ raw_datasets = raw_datasets.map(
486
+ replace_special_characters,
487
+ desc="replace special characters from datasets",
488
+ )
489
+ raw_datasets = raw_datasets.map(
490
+ remove_special_characters,
491
+ remove_columns=[text_column_name],
492
+ desc="remove special characters from datasets",
493
+ )
494
+
495
+ # save special tokens for tokenizer
496
+ word_delimiter_token = data_args.word_delimiter_token
497
+ unk_token = data_args.unk_token
498
+ pad_token = data_args.pad_token
499
+
500
+ # 3. Next, let's load the config as we might need it to create
501
+ # the tokenizer
502
+ # load config
503
+ config = AutoConfig.from_pretrained(
504
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
505
+ )
506
+
507
+ # 4. Next, if no tokenizer file is defined,
508
+ # we create the vocabulary of the model by extracting all unique characters from
509
+ # the training and evaluation datasets
510
+ # We need to make sure that only first rank saves vocabulary
511
+ # make sure all processes wait until vocab is created
512
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
513
+ tokenizer_kwargs = {}
514
+ if tokenizer_name_or_path is None:
515
+ # save vocab in training output dir
516
+ tokenizer_name_or_path = training_args.output_dir
517
+
518
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
519
+
520
+ with training_args.main_process_first():
521
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
522
+ os.remove(vocab_file)
523
+
524
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
525
+ if not os.path.isfile(vocab_file):
526
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
527
+ vocab_dict = create_vocabulary_from_data(
528
+ raw_datasets,
529
+ word_delimiter_token=word_delimiter_token,
530
+ unk_token=unk_token,
531
+ pad_token=pad_token,
532
+ )
533
+
534
+ # save vocab dict to be loaded into tokenizer
535
+ with open(vocab_file, "w") as file:
536
+ json.dump(vocab_dict, file)
537
+
538
+ # if tokenizer has just been created
539
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
540
+ tokenizer_kwargs = {
541
+ "config": config if config.tokenizer_class is not None else None,
542
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
543
+ "unk_token": unk_token,
544
+ "pad_token": pad_token,
545
+ "word_delimiter_token": word_delimiter_token,
546
+ }
547
+
548
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
549
+ # Note for distributed training, the .from_pretrained methods guarantee that only
550
+ # one local process can concurrently download model & vocab.
551
+
552
+ # load feature_extractor and tokenizer
553
+ tokenizer = AutoTokenizer.from_pretrained(
554
+ tokenizer_name_or_path,
555
+ use_auth_token=data_args.use_auth_token,
556
+ **tokenizer_kwargs,
557
+ )
558
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
559
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
560
+ )
561
+
562
+ # adapt config
563
+ config.update(
564
+ {
565
+ "feat_proj_dropout": model_args.feat_proj_dropout,
566
+ "attention_dropout": model_args.attention_dropout,
567
+ "hidden_dropout": model_args.hidden_dropout,
568
+ "final_dropout": model_args.final_dropout,
569
+ "mask_time_prob": model_args.mask_time_prob,
570
+ "mask_time_length": model_args.mask_time_length,
571
+ "mask_feature_prob": model_args.mask_feature_prob,
572
+ "mask_feature_length": model_args.mask_feature_length,
573
+ "gradient_checkpointing": training_args.gradient_checkpointing,
574
+ "layerdrop": model_args.layerdrop,
575
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
576
+ "pad_token_id": tokenizer.pad_token_id,
577
+ "vocab_size": len(tokenizer),
578
+ "activation_dropout": model_args.activation_dropout,
579
+ }
580
+ )
581
+
582
+ # create model
583
+ model = AutoModelForCTC.from_pretrained(
584
+ model_args.model_name_or_path,
585
+ cache_dir=model_args.cache_dir,
586
+ config=config,
587
+ use_auth_token=data_args.use_auth_token,
588
+ ignore_mismatched_sizes=True,
589
+ )
590
+
591
+ # freeze encoder
592
+ if model_args.freeze_feature_encoder:
593
+ model.freeze_feature_encoder()
594
+
595
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
596
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
597
+ # so that we just need to set the correct target sampling rate and normalize the input
598
+ # via the `feature_extractor`
599
+
600
+ # make sure that dataset decodes audio with correct sampling rate
601
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
602
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
603
+ raw_datasets = raw_datasets.cast_column(
604
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
605
+ )
606
+
607
+ # derive max & min input length for sample rate & max duration
608
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
609
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
610
+ audio_column_name = data_args.audio_column_name
611
+ num_workers = data_args.preprocessing_num_workers
612
+
613
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
614
+ phoneme_language = data_args.phoneme_language
615
+
616
+ # Preprocessing the datasets.
617
+ # We need to read the audio files as arrays and tokenize the targets.
618
+ def prepare_dataset(batch):
619
+ # load audio
620
+ sample = batch[audio_column_name]
621
+
622
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
623
+ batch["input_values"] = inputs.input_values[0]
624
+ batch["input_length"] = len(batch["input_values"])
625
+
626
+ # encode targets
627
+ additional_kwargs = {}
628
+ if phoneme_language is not None:
629
+ additional_kwargs["phonemizer_lang"] = phoneme_language
630
+
631
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
632
+ return batch
633
+
634
+ with training_args.main_process_first(desc="dataset map preprocessing"):
635
+ vectorized_datasets = raw_datasets.map(
636
+ prepare_dataset,
637
+ remove_columns=next(iter(raw_datasets.values())).column_names,
638
+ num_proc=num_workers,
639
+ desc="preprocess datasets",
640
+ )
641
+
642
+ def is_audio_in_length_range(length):
643
+ return length > min_input_length and length < max_input_length
644
+
645
+ # filter data that is shorter than min_input_length
646
+ vectorized_datasets = vectorized_datasets.filter(
647
+ is_audio_in_length_range,
648
+ num_proc=num_workers,
649
+ input_columns=["input_length"],
650
+ )
651
+
652
+ # 7. Next, we can prepare the training.
653
+ # Let's use word error rate (WER) as our evaluation metric,
654
+ # instantiate a data collator and the trainer
655
+
656
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
657
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
658
+
659
+ # for large datasets it is advised to run the preprocessing on a
660
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
661
+ # be a timeout when running the script in distributed mode.
662
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
663
+ # cached dataset
664
+ if data_args.preprocessing_only:
665
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
666
+ return
667
+
668
+ def compute_metrics(pred):
669
+ pred_logits = pred.predictions
670
+ pred_ids = np.argmax(pred_logits, axis=-1)
671
+
672
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
673
+
674
+ pred_str = tokenizer.batch_decode(pred_ids)
675
+ # we do not want to group tokens when computing the metrics
676
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
677
+
678
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
679
+
680
+ return metrics
681
+
682
+ # Now save everything to be able to create a single processor later
683
+ if is_main_process(training_args.local_rank):
684
+ # save feature extractor, tokenizer and config
685
+ feature_extractor.save_pretrained(training_args.output_dir)
686
+ tokenizer.save_pretrained(training_args.output_dir)
687
+ config.save_pretrained(training_args.output_dir)
688
+
689
+ try:
690
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
691
+ except (OSError, KeyError):
692
+ warnings.warn(
693
+ "Loading a processor from a feature extractor config that does not"
694
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
695
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
696
+ " `'processor_class': 'Wav2Vec2Processor'`",
697
+ FutureWarning,
698
+ )
699
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
700
+
701
+ # Instantiate custom data collator
702
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
703
+
704
+ # Initialize Trainer
705
+ trainer = Trainer(
706
+ model=model,
707
+ data_collator=data_collator,
708
+ args=training_args,
709
+ compute_metrics=compute_metrics,
710
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
711
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
712
+ tokenizer=feature_extractor,
713
+ )
714
+
715
+ # 8. Finally, we can start training
716
+
717
+ # Training
718
+ if training_args.do_train:
719
+
720
+ # use last checkpoint if exist
721
+ if last_checkpoint is not None:
722
+ checkpoint = last_checkpoint
723
+ elif os.path.isdir(model_args.model_name_or_path):
724
+ checkpoint = model_args.model_name_or_path
725
+ else:
726
+ checkpoint = None
727
+
728
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
729
+ trainer.save_model()
730
+
731
+ metrics = train_result.metrics
732
+ max_train_samples = (
733
+ data_args.max_train_samples
734
+ if data_args.max_train_samples is not None
735
+ else len(vectorized_datasets["train"])
736
+ )
737
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
738
+
739
+ trainer.log_metrics("train", metrics)
740
+ trainer.save_metrics("train", metrics)
741
+ trainer.save_state()
742
+
743
+ # Evaluation
744
+ results = {}
745
+ if training_args.do_eval:
746
+ logger.info("*** Evaluate ***")
747
+ metrics = trainer.evaluate()
748
+ max_eval_samples = (
749
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
750
+ )
751
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
752
+
753
+ trainer.log_metrics("eval", metrics)
754
+ trainer.save_metrics("eval", metrics)
755
+
756
+ # Write model card and (optionally) push to hub
757
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
758
+ kwargs = {
759
+ "finetuned_from": model_args.model_name_or_path,
760
+ "tasks": "speech-recognition",
761
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
762
+ "dataset_args": (
763
+ f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
764
+ f" {data_args.eval_split_name}"
765
+ ),
766
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
767
+ }
768
+ if "common_voice" in data_args.dataset_name:
769
+ kwargs["language"] = config_name
770
+
771
+ if training_args.push_to_hub:
772
+ trainer.push_to_hub(**kwargs)
773
+ else:
774
+ trainer.create_model_card(**kwargs)
775
+
776
+ return results
777
+
778
+
779
+ if __name__ == "__main__":
780
+ main()
runs/May19_22-00-26_bioman2/1652990441.5639462/events.out.tfevents.1652990441.bioman2.92758.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56147c697a02741c205d23a074f3bfe2cd357e841e496fc706b9d9f722846e1c
3
+ size 5120
runs/May19_22-00-26_bioman2/events.out.tfevents.1652990441.bioman2.92758.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a8279df32e231d3b586620d97542a2dad9495657d53e75ad14323b0a3717c42
3
+ size 6189
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "replace_word_delimiter_char": " ", "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52cfd4015ec0db619281e154305982fffeb523bf808b4d3242ce650bc3122554
3
+ size 3183
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"&": 1, "'": 2, "(": 3, ")": 4, "/": 5, "0": 6, "1": 7, "2": 8, "3": 9, "4": 10, "7": 11, "9": 12, "a": 13, "b": 14, "c": 15, "d": 16, "e": 17, "f": 18, "g": 19, "h": 20, "i": 21, "j": 22, "k": 23, "l": 24, "m": 25, "n": 26, "o": 27, "p": 28, "q": 29, "r": 30, "s": 31, "t": 32, "u": 33, "v": 34, "w": 35, "x": 36, "y": 37, "z": 38, "à": 39, "â": 40, "ä": 41, "ç": 42, "è": 43, "é": 44, "ê": 45, "ë": 46, "î": 47, "ï": 48, "ô": 49, "ö": 50, "û": 51, "ü": 52, "|": 0, "[UNK]": 53, "[PAD]": 54}