Push the trained agent ppo-LunarLander-v2
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 246.90 +/- 21.27
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69752e1750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69752e17e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69752e1870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69752e1900>", "_build": "<function ActorCriticPolicy._build at 0x7f69752e1990>", "forward": "<function ActorCriticPolicy.forward at 0x7f69752e1a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69752e1ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69752e1b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f69752e1bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69752e1c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69752e1cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69752e1d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f69752e5340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1741966291865435441, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWe+JgsshCMAWyUTegDjAF0lEdAo6j5AjY7JXV9lChoBkdAYkGjEehf0GgHTegDaAhHQKOqdSWqtHR1fZQoaAZHQHGX86vJRwZoB03oAWgIR0CjqpxJul41dX2UKGgGR0A0G7dSEUTMaAdL72gIR0CjrBulGgBcdX2UKGgGR0BhyndoFmnPaAdN6ANoCEdAo6wuo5xR23V9lChoBkdAa3eRUWEbpGgHTWcDaAhHQKOsNYEGJN11fZQoaAZHQGYQB9LHuJFoB03oA2gIR0CjrT+NLlFMdX2UKGgGR0BnH052hZhbaAdN6ANoCEdAo66LIeYD1XV9lChoBkdAXgbhtLteD2gHTegDaAhHQKOu2fywwCd1fZQoaAZHQEHdKpT/ACZoB0vYaAhHQKOxGgcLjPx1fZQoaAZHQGXakVeruIBoB03oA2gIR0CjsVLNnoPkdX2UKGgGR0Bmae7z06HTaAdN6ANoCEdAo7GaQxN7B3V9lChoBkdAX8Y4ACGN72gHTegDaAhHQKOzvggHNX51fZQoaAZHQGS4QyAQQMBoB03oA2gIR0CjttbnX/YKdX2UKGgGR0BwVKoCMgloaAdNwQFoCEdAo7hVTo+wDHV9lChoBkdAYZ09OARTTGgHTegDaAhHQKO5Dt8/lhh1fZQoaAZHQGTVB42S+xpoB03oA2gIR0CjusCgkC3gdX2UKGgGR0BsRGHUMG5daAdNCQNoCEdAo74BkoWpInV9lChoBkdAb4aTQmeDnWgHTYQDaAhHQKO/P0hePaN1fZQoaAZHQG2WetbLU1BoB00tAmgIR0CjwUVr6+FldX2UKGgGR0Bw/P9gnc+JaAdNGwNoCEdAo88IvalDW3V9lChoBkdAZUdyd4FA3WgHTegDaAhHQKPP7LJ0W/J1fZQoaAZHQGMTdAHE/B5oB03oA2gIR0Cj0BiQtBfKdX2UKGgGR0Bxa9xS5y2haAdNTAJoCEdAo9FK75Ec83V9lChoBkdAYa8YixFAmmgHTegDaAhHQKPRoHD76551fZQoaAZHQGRWvrfLs8hoB03oA2gIR0Cj0uw4S6DodX2UKGgGR0BuOwXMyJsPaAdNRwNoCEdAo9NGtuDSPXV9lChoBkdAY5/JQLux8mgHTegDaAhHQKPUkoWpIc11fZQoaAZHQHAQbwvxpcpoB035AWgIR0Cj1Y5eRgZ1dX2UKGgGR0BjYTmbLEDRaAdN6ANoCEdAo9duU8mrsHV9lChoBkdAQHSFVT72tmgHS+RoCEdAo9jY9gWrO3V9lChoBkdAZCjIhhYvFmgHTegDaAhHQKPZRI4EOiF1fZQoaAZHQG+QRBE8aGZoB01kAmgIR0Cj2WXVLBbfdX2UKGgGR0BwwZw4sEq2aAdNaQNoCEdAo9v8Q04zanV9lChoBkdAZsyO09hZyWgHTegDaAhHQKPdB/smfGx1fZQoaAZHQGUB6InBtUJoB03oA2gIR0Cj3bE61b7kdX2UKGgGR0BtLuza9K28aAdN5gFoCEdAo+FzMC9ytHV9lChoBkdAcF0Cw8nuzGgHTdkCaAhHQKPjZBMzuWt1fZQoaAZHQHAmIdIXj2loB03QAmgIR0Cj5VBJiAlOdX2UKGgGR0Bv5Li++M6zaAdNtANoCEdAo+VzKaG5+nV9lChoBkdAbXgMlTm4iGgHTZIDaAhHQKPyerUb1h91fZQoaAZHQHJ5xAGB4D9oB03SAWgIR0Cj80HCGetkdX2UKGgGR0BiEpP2wmmcaAdN6ANoCEdAo/PeetjkMnV9lChoBkdAZB2gFHJ9zGgHTegDaAhHQKP13ezD4xl1fZQoaAZHQGuwclHBk7RoB023AmgIR0Cj9nd0Rvm6dX2UKGgGR0BxmH4k/r0KaAdNPQJoCEdAo/bTtG/etXV9lChoBkdAZh1brTpgTmgHTegDaAhHQKP3atpVS4x1fZQoaAZHQHCBCvcJtzloB01SAWgIR0Cj96O5jH4odX2UKGgGR0Bw/au7pV0caAdNCgNoCEdAo/fbL0SRKnV9lChoBkdAcYKKMefZmWgHTZUBaAhHQKP36PqcEvF1fZQoaAZHQHDXc0P6KtRoB03AA2gIR0Cj+LbQ9ic5dX2UKGgGR0BtcyROk+HKaAdNmwNoCEdAo/lgAGSpznV9lChoBkdAcrtK9PDYRWgHTbcCaAhHQKP5lCWNWEN1fZQoaAZHQHItRm5DqnpoB00WAWgIR0Cj+1no5ggHdX2UKGgGR0BlKOhM8HObaAdN6ANoCEdAo/yphUipvXV9lChoBkdAbJ3Gz8gp0GgHTawBaAhHQKP9Q+SKWLR1fZQoaAZHQE7mAmzByjpoB0vaaAhHQKP9kNQ0oBt1fZQoaAZHQG4dSsCDEm9oB00iAWgIR0Cj/j7gsK9gdX2UKGgGR0BtXSGFi8WcaAdNMQFoCEdAo/6ScslLOHV9lChoBkdAcZEsrNGEwmgHTXEBaAhHQKP/qaZQYUF1fZQoaAZHQHIkILofSx9oB02UA2gIR0CkAcU6o2n9dX2UKGgGR0BwuCW7e2uxaAdNmgNoCEdApASJJqZc9nV9lChoBkdAcjsEUTL4e2gHTRwCaAhHQKQGBogV45d1fZQoaAZHQG0fy5qdpZhoB02WA2gIR0CkB7LofSx8dX2UKGgGR0Bw9iBBiTdMaAdN1QNoCEdApAoRkVeruXV9lChoBkdAciQmRNh3JWgHTd4CaAhHQKQUqHhS9/V1fZQoaAZHQHKmzfJmukloB02UA2gIR0CkFbJfYzzmdX2UKGgGR0BlThsuWa+faAdN6ANoCEdApBfJtaY/mnV9lChoBkdAcaIeGfwqiGgHTf4BaAhHQKQYUuV5a/11fZQoaAZHQHCP2QfZElVoB02ZAmgIR0CkGIT7l7tzdX2UKGgGR0BiUXTy8SPEaAdN6ANoCEdApBjt8/lhgHV9lChoBkdAcHSRk3CKrWgHTVgBaAhHQKQaAB7u2JB1fZQoaAZHQHDFrLlmvntoB02qAWgIR0CkGle4TbnHdX2UKGgGR0BukWzQeFL4aAdNFwNoCEdApBpwevIOpnV9lChoBkdAbncTUy57PmgHTaIDaAhHQKQbse6qbSZ1fZQoaAZHQHFWaYqoZQ5oB01TAWgIR0CkHMFLvkR0dX2UKGgGR0BwoxOnEVFhaAdNdAJoCEdApB1VRm9QGnV9lChoBkdAcEMRQ79ycWgHTcIDaAhHQKQdZV+7UXp1fZQoaAZHQHCNM23rleZoB03CAWgIR0CkHjGoR7JGdX2UKGgGR0BmVCnNxEORaAdN6ANoCEdApB6pVXFLnXV9lChoBkdAZUtc+qzZ6GgHTegDaAhHQKQfawu/UON1fZQoaAZHQGPfK64Ds+poB03oA2gIR0CkIK5vcafjdX2UKGgGR0Bvc4JkXk5qaAdNiwFoCEdApCDjZJ04i3V9lChoBkdAcMd1F6RhdGgHTRcCaAhHQKQiAcaOxSp1fZQoaAZHQCw6nzg/C69oB0vsaAhHQKQixGtp22Z1fZQoaAZHQHH5vkeZG8VoB02ZAWgIR0CkI4ea8YhudX2UKGgGR0BxYCyrxRVIaAdNvAFoCEdApCQt3B55aHV9lChoBkdAb09+yZ8a42gHTUECaAhHQKQkg7Rv3rV1fZQoaAZHQHGGX+uNgjRoB00rAmgIR0CkJLmo73fydX2UKGgGR0BxN4tEofCAaAdNqAFoCEdApCUqVObiInV9lChoBkdAcqgy3Td+HGgHTRoCaAhHQKQlyblRxcV1fZQoaAZHQHAOpprULD1oB01iAWgIR0CkJoloDgZTdX2UKGgGR0BxTWXzDn/2aAdN7gFoCEdApCeu9cry2HV9lChoBkdAcGdbQTmGNGgHTbABaAhHQKQnvu63AmB1fZQoaAZHQG910VBUrCpoB02qAWgIR0CkKMgOSW7fdX2UKGgGR0BxVJ1U2kzoaAdNgAFoCEdApClE7MgU13V9lChoBkdAb1ISLZSNwWgHTaABaAhHQKQpwQZGax51fZQoaAZHQG81qfOD8LtoB01gAWgIR0CkKj8uJ1q4dX2UKGgGR0Bw0FPacqe9aAdNQgFoCEdApCpOsA/9pHV9lChoBkdAcaqnHeaa1GgHTTMBaAhHQKQqma3I+4d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/gAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoC4wCaTiUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL21pbGFkL21pbmljb25kYTMvZW52cy9odWdnaW5nX2ZhY2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9taWxhZC9taW5pY29uZGEzL2VudnMvaHVnZ2luZ19mYWNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL21pbGFkL21pbmljb25kYTMvZW52cy9odWdnaW5nX2ZhY2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9taWxhZC9taW5pY29uZGEzL2VudnMvaHVnZ2luZ19mYWNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Tue Nov 5 00:21:55 UTC 2024", "Python": "3.10.16", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "False", "Numpy": "2.2.3", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6cc10b67cd9ed91ab8900830b2d061fd52c5ac9b4be9137542f5749d2e8adc65
|
| 3 |
+
size 146769
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f69752e1750>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69752e17e0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69752e1870>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69752e1900>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f69752e1990>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f69752e1a20>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69752e1ab0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69752e1b40>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f69752e1bd0>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69752e1c60>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69752e1cf0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69752e1d80>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f69752e5340>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1015808,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1741966291865435441,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": null,
|
| 33 |
+
"_last_episode_starts": {
|
| 34 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 35 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
| 36 |
+
},
|
| 37 |
+
"_last_original_obs": null,
|
| 38 |
+
"_episode_num": 0,
|
| 39 |
+
"use_sde": false,
|
| 40 |
+
"sde_sample_freq": -1,
|
| 41 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 42 |
+
"_stats_window_size": 100,
|
| 43 |
+
"ep_info_buffer": {
|
| 44 |
+
":type:": "<class 'collections.deque'>",
|
| 45 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWe+JgsshCMAWyUTegDjAF0lEdAo6j5AjY7JXV9lChoBkdAYkGjEehf0GgHTegDaAhHQKOqdSWqtHR1fZQoaAZHQHGX86vJRwZoB03oAWgIR0CjqpxJul41dX2UKGgGR0A0G7dSEUTMaAdL72gIR0CjrBulGgBcdX2UKGgGR0BhyndoFmnPaAdN6ANoCEdAo6wuo5xR23V9lChoBkdAa3eRUWEbpGgHTWcDaAhHQKOsNYEGJN11fZQoaAZHQGYQB9LHuJFoB03oA2gIR0CjrT+NLlFMdX2UKGgGR0BnH052hZhbaAdN6ANoCEdAo66LIeYD1XV9lChoBkdAXgbhtLteD2gHTegDaAhHQKOu2fywwCd1fZQoaAZHQEHdKpT/ACZoB0vYaAhHQKOxGgcLjPx1fZQoaAZHQGXakVeruIBoB03oA2gIR0CjsVLNnoPkdX2UKGgGR0Bmae7z06HTaAdN6ANoCEdAo7GaQxN7B3V9lChoBkdAX8Y4ACGN72gHTegDaAhHQKOzvggHNX51fZQoaAZHQGS4QyAQQMBoB03oA2gIR0CjttbnX/YKdX2UKGgGR0BwVKoCMgloaAdNwQFoCEdAo7hVTo+wDHV9lChoBkdAYZ09OARTTGgHTegDaAhHQKO5Dt8/lhh1fZQoaAZHQGTVB42S+xpoB03oA2gIR0CjusCgkC3gdX2UKGgGR0BsRGHUMG5daAdNCQNoCEdAo74BkoWpInV9lChoBkdAb4aTQmeDnWgHTYQDaAhHQKO/P0hePaN1fZQoaAZHQG2WetbLU1BoB00tAmgIR0CjwUVr6+FldX2UKGgGR0Bw/P9gnc+JaAdNGwNoCEdAo88IvalDW3V9lChoBkdAZUdyd4FA3WgHTegDaAhHQKPP7LJ0W/J1fZQoaAZHQGMTdAHE/B5oB03oA2gIR0Cj0BiQtBfKdX2UKGgGR0Bxa9xS5y2haAdNTAJoCEdAo9FK75Ec83V9lChoBkdAYa8YixFAmmgHTegDaAhHQKPRoHD76551fZQoaAZHQGRWvrfLs8hoB03oA2gIR0Cj0uw4S6DodX2UKGgGR0BuOwXMyJsPaAdNRwNoCEdAo9NGtuDSPXV9lChoBkdAY5/JQLux8mgHTegDaAhHQKPUkoWpIc11fZQoaAZHQHAQbwvxpcpoB035AWgIR0Cj1Y5eRgZ1dX2UKGgGR0BjYTmbLEDRaAdN6ANoCEdAo9duU8mrsHV9lChoBkdAQHSFVT72tmgHS+RoCEdAo9jY9gWrO3V9lChoBkdAZCjIhhYvFmgHTegDaAhHQKPZRI4EOiF1fZQoaAZHQG+QRBE8aGZoB01kAmgIR0Cj2WXVLBbfdX2UKGgGR0BwwZw4sEq2aAdNaQNoCEdAo9v8Q04zanV9lChoBkdAZsyO09hZyWgHTegDaAhHQKPdB/smfGx1fZQoaAZHQGUB6InBtUJoB03oA2gIR0Cj3bE61b7kdX2UKGgGR0BtLuza9K28aAdN5gFoCEdAo+FzMC9ytHV9lChoBkdAcF0Cw8nuzGgHTdkCaAhHQKPjZBMzuWt1fZQoaAZHQHAmIdIXj2loB03QAmgIR0Cj5VBJiAlOdX2UKGgGR0Bv5Li++M6zaAdNtANoCEdAo+VzKaG5+nV9lChoBkdAbXgMlTm4iGgHTZIDaAhHQKPyerUb1h91fZQoaAZHQHJ5xAGB4D9oB03SAWgIR0Cj80HCGetkdX2UKGgGR0BiEpP2wmmcaAdN6ANoCEdAo/PeetjkMnV9lChoBkdAZB2gFHJ9zGgHTegDaAhHQKP13ezD4xl1fZQoaAZHQGuwclHBk7RoB023AmgIR0Cj9nd0Rvm6dX2UKGgGR0BxmH4k/r0KaAdNPQJoCEdAo/bTtG/etXV9lChoBkdAZh1brTpgTmgHTegDaAhHQKP3atpVS4x1fZQoaAZHQHCBCvcJtzloB01SAWgIR0Cj96O5jH4odX2UKGgGR0Bw/au7pV0caAdNCgNoCEdAo/fbL0SRKnV9lChoBkdAcYKKMefZmWgHTZUBaAhHQKP36PqcEvF1fZQoaAZHQHDXc0P6KtRoB03AA2gIR0Cj+LbQ9ic5dX2UKGgGR0BtcyROk+HKaAdNmwNoCEdAo/lgAGSpznV9lChoBkdAcrtK9PDYRWgHTbcCaAhHQKP5lCWNWEN1fZQoaAZHQHItRm5DqnpoB00WAWgIR0Cj+1no5ggHdX2UKGgGR0BlKOhM8HObaAdN6ANoCEdAo/yphUipvXV9lChoBkdAbJ3Gz8gp0GgHTawBaAhHQKP9Q+SKWLR1fZQoaAZHQE7mAmzByjpoB0vaaAhHQKP9kNQ0oBt1fZQoaAZHQG4dSsCDEm9oB00iAWgIR0Cj/j7gsK9gdX2UKGgGR0BtXSGFi8WcaAdNMQFoCEdAo/6ScslLOHV9lChoBkdAcZEsrNGEwmgHTXEBaAhHQKP/qaZQYUF1fZQoaAZHQHIkILofSx9oB02UA2gIR0CkAcU6o2n9dX2UKGgGR0BwuCW7e2uxaAdNmgNoCEdApASJJqZc9nV9lChoBkdAcjsEUTL4e2gHTRwCaAhHQKQGBogV45d1fZQoaAZHQG0fy5qdpZhoB02WA2gIR0CkB7LofSx8dX2UKGgGR0Bw9iBBiTdMaAdN1QNoCEdApAoRkVeruXV9lChoBkdAciQmRNh3JWgHTd4CaAhHQKQUqHhS9/V1fZQoaAZHQHKmzfJmukloB02UA2gIR0CkFbJfYzzmdX2UKGgGR0BlThsuWa+faAdN6ANoCEdApBfJtaY/mnV9lChoBkdAcaIeGfwqiGgHTf4BaAhHQKQYUuV5a/11fZQoaAZHQHCP2QfZElVoB02ZAmgIR0CkGIT7l7tzdX2UKGgGR0BiUXTy8SPEaAdN6ANoCEdApBjt8/lhgHV9lChoBkdAcHSRk3CKrWgHTVgBaAhHQKQaAB7u2JB1fZQoaAZHQHDFrLlmvntoB02qAWgIR0CkGle4TbnHdX2UKGgGR0BukWzQeFL4aAdNFwNoCEdApBpwevIOpnV9lChoBkdAbncTUy57PmgHTaIDaAhHQKQbse6qbSZ1fZQoaAZHQHFWaYqoZQ5oB01TAWgIR0CkHMFLvkR0dX2UKGgGR0BwoxOnEVFhaAdNdAJoCEdApB1VRm9QGnV9lChoBkdAcEMRQ79ycWgHTcIDaAhHQKQdZV+7UXp1fZQoaAZHQHCNM23rleZoB03CAWgIR0CkHjGoR7JGdX2UKGgGR0BmVCnNxEORaAdN6ANoCEdApB6pVXFLnXV9lChoBkdAZUtc+qzZ6GgHTegDaAhHQKQfawu/UON1fZQoaAZHQGPfK64Ds+poB03oA2gIR0CkIK5vcafjdX2UKGgGR0Bvc4JkXk5qaAdNiwFoCEdApCDjZJ04i3V9lChoBkdAcMd1F6RhdGgHTRcCaAhHQKQiAcaOxSp1fZQoaAZHQCw6nzg/C69oB0vsaAhHQKQixGtp22Z1fZQoaAZHQHH5vkeZG8VoB02ZAWgIR0CkI4ea8YhudX2UKGgGR0BxYCyrxRVIaAdNvAFoCEdApCQt3B55aHV9lChoBkdAb09+yZ8a42gHTUECaAhHQKQkg7Rv3rV1fZQoaAZHQHGGX+uNgjRoB00rAmgIR0CkJLmo73fydX2UKGgGR0BxN4tEofCAaAdNqAFoCEdApCUqVObiInV9lChoBkdAcqgy3Td+HGgHTRoCaAhHQKQlyblRxcV1fZQoaAZHQHAOpprULD1oB01iAWgIR0CkJoloDgZTdX2UKGgGR0BxTWXzDn/2aAdN7gFoCEdApCeu9cry2HV9lChoBkdAcGdbQTmGNGgHTbABaAhHQKQnvu63AmB1fZQoaAZHQG910VBUrCpoB02qAWgIR0CkKMgOSW7fdX2UKGgGR0BxVJ1U2kzoaAdNgAFoCEdApClE7MgU13V9lChoBkdAb1ISLZSNwWgHTaABaAhHQKQpwQZGax51fZQoaAZHQG81qfOD8LtoB01gAWgIR0CkKj8uJ1q4dX2UKGgGR0Bw0FPacqe9aAdNQgFoCEdApCpOsA/9pHV9lChoBkdAcaqnHeaa1GgHTTMBaAhHQKQqma3I+4d1ZS4="
|
| 46 |
+
},
|
| 47 |
+
"ep_success_buffer": {
|
| 48 |
+
":type:": "<class 'collections.deque'>",
|
| 49 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 50 |
+
},
|
| 51 |
+
"_n_updates": 248,
|
| 52 |
+
"observation_space": {
|
| 53 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 54 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
| 55 |
+
"dtype": "float32",
|
| 56 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 57 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 58 |
+
"_shape": [
|
| 59 |
+
8
|
| 60 |
+
],
|
| 61 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 62 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 63 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 64 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 65 |
+
"_np_random": null
|
| 66 |
+
},
|
| 67 |
+
"action_space": {
|
| 68 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 69 |
+
":serialized:": "gAWV/gAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoC4wCaTiUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
| 70 |
+
"n": "4",
|
| 71 |
+
"start": "0",
|
| 72 |
+
"_shape": [],
|
| 73 |
+
"dtype": "int64",
|
| 74 |
+
"_np_random": null
|
| 75 |
+
},
|
| 76 |
+
"n_envs": 1,
|
| 77 |
+
"n_steps": 1024,
|
| 78 |
+
"gamma": 0.999,
|
| 79 |
+
"gae_lambda": 0.98,
|
| 80 |
+
"ent_coef": 0.01,
|
| 81 |
+
"vf_coef": 0.5,
|
| 82 |
+
"max_grad_norm": 0.5,
|
| 83 |
+
"batch_size": 64,
|
| 84 |
+
"n_epochs": 4,
|
| 85 |
+
"clip_range": {
|
| 86 |
+
":type:": "<class 'function'>",
|
| 87 |
+
":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL21pbGFkL21pbmljb25kYTMvZW52cy9odWdnaW5nX2ZhY2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9taWxhZC9taW5pY29uZGEzL2VudnMvaHVnZ2luZ19mYWNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 88 |
+
},
|
| 89 |
+
"clip_range_vf": null,
|
| 90 |
+
"normalize_advantage": true,
|
| 91 |
+
"target_kl": null,
|
| 92 |
+
"lr_schedule": {
|
| 93 |
+
":type:": "<class 'function'>",
|
| 94 |
+
":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL21pbGFkL21pbmljb25kYTMvZW52cy9odWdnaW5nX2ZhY2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9taWxhZC9taW5pY29uZGEzL2VudnMvaHVnZ2luZ19mYWNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 95 |
+
}
|
| 96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:526c00d009e3117839f5ebf6f485252a7776722e1d2838657cbe74aeccc4c2ac
|
| 3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8cac2971d8e0723d9db17ef6858dc5849f90390804f7169b1c8a92587d52525
|
| 3 |
+
size 43634
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Tue Nov 5 00:21:55 UTC 2024
|
| 2 |
+
- Python: 3.10.16
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.6.0+cu124
|
| 5 |
+
- GPU Enabled: False
|
| 6 |
+
- Numpy: 2.2.3
|
| 7 |
+
- Cloudpickle: 3.1.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7290dc1ba2ab6f72d88cdffd3cdc0414a5951d434f35989bd1af0b956fd34a25
|
| 3 |
+
size 161520
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 246.898151, "std_reward": 21.27399796578552, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-14T17:59:37.333549"}
|