LeKyks1 commited on
Commit
3097f8a
1 Parent(s): 9c4d584

Upload PPO LunarLander-v2 trained agent

Browse files
ModelPPO1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c925c5046e93cb9c8fe3b0e5642b094c490d2c2fec52bb3c5d06d95a9667b0a3
3
+ size 147899
ModelPPO1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ModelPPO1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79f87db37520>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79f87db375b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79f87db37640>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79f87db376d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79f87db37760>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79f87db377f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79f87db37880>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79f87db37910>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79f87db379a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79f87db37a30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79f87db37ac0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79f87db37b50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79f87daded40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 1000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1699008455511923035,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKCNOj5voHU/wb4VP5x8T7+aFpG+Q41avgAAAAAAAAAA6o+EPph4qD8jpVE/1AjavmfN2r4jtMW+AAAAAAAAAACzchG/VjsDPwNugL8jnYa/FM6uPgOrmj4AAAAAAAAAAO6kFL9Fnaw+U38ev762jL/mZy4/Xnb5PgAAAAAAAAAAD4NQv3XRFj/Yibq/De7QvykFNEAmA2M/AAAAAAAAAAAac4K9VJBkP4V1H77WoZC/hlw0P/774T4AAAAAAAAAAFbmZr8pp0Y+BSuLv821tb+7yFw/rVKZPgAAAAAAAAAAzWYfPIMwtD+Qnf4+f8urvaI3UrzVUBS+AAAAAAAAAAAzEym8H4yvP2RxQb4dt7e+MVcTPSn3Jj4AAAAAAAAAADNxJb21mwQ/Z/OWvT5WqL+GLJm+NvzavQAAAAAAAAAAZp/BvUmfjj898Hu+UoYav6fqHT0uNsa9AAAAAAAAAAAaVko9DjSDP1rnYz169oS/g/3gvVupdj4AAAAAAAAAAJb/gj4miwQ/ZSaFPt51fb8BQGK9DccovgAAAAAAAAAAzTDeO3ypsz9S0S8/JVymvmqeALwfTR++AAAAAAAAAAADfX6+5++uP/bzO782n6a+IoVRPhKqWj4AAAAAAAAAAFr/U77ES5Y/ICfkvpyKIL8IBfu7doIkPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -15.384,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHHNR5HEuQKMAWyUS3OMAXSUR0CYmQjwQUYbdX2UKGgGR8B1jgJSiudPaAdLYWgIR0CYmUZXuE26dX2UKGgGR8BgI0BuGbkPaAdLRmgIR0CYmXnSv1UVdX2UKGgGR8Bxj+5CngpCaAdLc2gIR0CYmZD2alUIdX2UKGgGR8BWzpNXYDkmaAdLWWgIR0CYmY1XvH94dX2UKGgGR8BXDFY+0PYnaAdLP2gIR0CYmbpzLfUGdX2UKGgGR8BYpMdcSoOyaAdLP2gIR0CYmcona37UdX2UKGgGR8BqkTJr+HafaAdLUGgIR0CYmeIBBAv+dX2UKGgGR0Az3dFOO802aAdLiWgIR0CYmd3hGYrsdX2UKGgGR8Bw137YTTOPaAdLWWgIR0CYmfFR51NhdX2UKGgGR8Bj6J4MWoFWaAdLX2gIR0CYmezl90A+dX2UKGgGR8BZAuhbnoxIaAdLRGgIR0CYmf3yI55rdX2UKGgGR8BY+B/EwWWQaAdLSmgIR0CYmfy6MBIXdX2UKGgGR8BurCI55qubaAdLZWgIR0CYmiWsijcmdX2UKGgGR8BxMiYgJTl1aAdLVWgIR0CYmlxzq8lHdX2UKGgGR8Bo9NzbN8mbaAdLY2gIR0CYmpAMlTm5dX2UKGgGR8BSZhUJfICEaAdLPmgIR0CYms6eoUBXdX2UKGgGR8BhyM1uR9w4aAdLNWgIR0CYmt+bExZddX2UKGgGR8BcEY/qxC6ZaAdLUWgIR0CYmwVBlcyFdX2UKGgGR8BlN+4I8hcJaAdLYWgIR0CYmxj59E1EdX2UKGgGR8BgvVLteD3/aAdLU2gIR0CYm0863iJgdX2UKGgGR8BiX1wkxASnaAdLTGgIR0CYm0rtE5QxdX2UKGgGR8BhcOS8rZrYaAdLSWgIR0CYm17tiQT3dX2UKGgGR8BTXJBsyi22aAdLYGgIR0CYm47ngYP5dX2UKGgGR8Bv522y9mHyaAdLXmgIR0CYm8bpu/DcdX2UKGgGR8BxepWuHN5daAdLXmgIR0CYm9o6S1VpdX2UKGgGR8Bzml7jT8YRaAdLXmgIR0CYm+hUR3/xdX2UKGgGR8BRdvV3EAHWaAdLT2gIR0CYm/tHxz7udX2UKGgGR8BgxUzoEB8yaAdLcGgIR0CYnDU5MlC1dX2UKGgGR8BP+p+2E0zkaAdLQGgIR0CYnFqt5le4dX2UKGgGR8BLlwgLZzxPaAdLSGgIR0CYnF6eoUBXdX2UKGgGR8BmmeUB4lhPaAdLdmgIR0CYnGgQ6IWQdX2UKGgGR8B7vvGHYYixaAdLYmgIR0CYnJWp6yB1dX2UKGgGR8B1Vxq59Vm0aAdLgmgIR0CYnND7qIJrdX2UKGgGR8BvQHsHB1s+aAdLSGgIR0CYnNnjABT5dX2UKGgGR8BhM8pb2USqaAdLWWgIR0CYnPENe+mFdX2UKGgGR8BsfMpobn5jaAdLU2gIR0CYnQH+IdlvdX2UKGgGR8BWi/t6X0GvaAdLWmgIR0CYnSsImgJ1dX2UKGgGR8BhbBKFqSHNaAdLQ2gIR0CYnTyksSTRdX2UKGgGR8BjOOnsLORlaAdLd2gIR0CYnUPSDyvtdX2UKGgGR8BF34Vh1DBuaAdLPWgIR0CYnZu8scyWdX2UKGgGR8BV0zufEn9faAdLPmgIR0CYnaSlnAZbdX2UKGgGR8B50qYc/+sHaAdLV2gIR0CYnbUh3aBadX2UKGgGR8B4eU3m3fALaAdLV2gIR0CYncvnr6cidX2UKGgGR8BoDx9Aood/aAdLbmgIR0CYndk1/DtPdX2UKGgGR8BlHsI/qxC6aAdLSmgIR0CYne/SYw7DdX2UKGgGR8Bq0YsXizcAaAdLRmgIR0CYngl3yI56dX2UKGgGR8BdABkqc3ERaAdLe2gIR0CYnlFh5PdmdX2UKGgGR8BpwOrMkhRqaAdLS2gIR0CYnl7HyVfNdX2UKGgGR8BZX3fyf+S9aAdLRGgIR0CYnquyeI2wdX2UKGgGR8BX2ois4ku6aAdLSGgIR0CYnrr2QGOddX2UKGgGR8Br28EC/47BaAdLgWgIR0CYnuDFqBVddX2UKGgGR8BhI7mOlwcYaAdLXWgIR0CYnu9roGILdX2UKGgGR8Bxui2E0zj4aAdLYWgIR0CYnvVIqbz9dX2UKGgGR8BihbnDBMzuaAdLWWgIR0CYnwVmjCYUdX2UKGgGR8BrmBiPQv6CaAdLbGgIR0CYnxqi48U3dX2UKGgGR8Bbr/Uz9CNTaAdLS2gIR0CYnyy5I6KcdX2UKGgGR8BiYZcJMQEqaAdLQmgIR0CYnzas6q82dX2UKGgGR8BIFZMURFqjaAdLOmgIR0CYnz+gUUO/dX2UKGgGR8Bc5w9mpVCHaAdLRWgIR0CYn1yXlbNbdX2UKGgGR8B1xm7voePraAdLVmgIR0CYn44ecQRPdX2UKGgGR8Bs3MrGza9LaAdLY2gIR0CYn7ssQNCrdX2UKGgGR8BdoGPT5O8DaAdLUWgIR0CYoATVDrqudX2UKGgGR8BZmW9g4OtoaAdLPGgIR0CYoC8rZrYXdX2UKGgGR8BCaRZuAI6baAdLfmgIR0CYoD/S6UaAdX2UKGgGR8Bo41WU8mrsaAdLTmgIR0CYoFrC3w1BdX2UKGgGR8BkuzDIikftaAdLOmgIR0CYoGnIhhYvdX2UKGgGR8By1kfigkC4aAdLVmgIR0CYoHcy31BddX2UKGgGR8BXWMK5TZQIaAdLTWgIR0CYoHu2qkuZdX2UKGgGR8B86+mzjWCmaAdLa2gIR0CYoIxlxwQ2dX2UKGgGR8B4njcHnlnzaAdLUmgIR0CYoNyD7IkrdX2UKGgGR8Bbqvr0J4SpaAdLXWgIR0CYoNx/NJOGdX2UKGgGR8BabH2VVxS6aAdLX2gIR0CYoP2oNutPdX2UKGgGR8Bpq1p9JBgNaAdLX2gIR0CYoVe4Cp3pdX2UKGgGR8B2hmTW5H3DaAdLZmgIR0CYoV+RHPNWdX2UKGgGR8Bi+L1ZkkKNaAdLV2gIR0CYoZqYJE6UdX2UKGgGR8Bx0mO/+Kj0aAdLSmgIR0CYoaMW43FUdX2UKGgGR8Bd5HC9AX2vaAdLQGgIR0CYobus90RwdX2UKGgGR8BrmQKWszVMaAdLfmgIR0CYocTsIE8rdX2UKGgGR8AHMGkep4r0aAdLRmgIR0CYohqIJqqPdX2UKGgGR8BVrClJpWWAaAdLe2gIR0CYoj5hz/6wdX2UKGgGR8BVoBxHXmNjaAdLPWgIR0CYomNLlFMJdX2UKGgGR8BHIt5dGAkLaAdLYWgIR0CYomrSmZVodX2UKGgGR8BgZLvuw5eaaAdLWGgIR0CYonOx0MgEdX2UKGgGR8Bm+ltTDO1OaAdLSmgIR0CYopAFgUlBdX2UKGgGR8BLtR+az/p/aAdLT2gIR0CYoq+1jRUndX2UKGgGR8BPul5OafBfaAdLdWgIR0CYotOSGJvYdX2UKGgGR8BVRwRTS9dvaAdLdGgIR0CYoxuogmqpdX2UKGgGR8Bd8tPci4axaAdLSGgIR0CYo1JSBK+SdX2UKGgGR8Bo6Zltj0+UaAdLSWgIR0CYo2Iz3yqddX2UKGgGR8Bc4kKu0TlDaAdLV2gIR0CYo2r5qM3qdX2UKGgGR8BxjSkk8ifQaAdLZmgIR0CYo8zT4L1FdX2UKGgGR8BmYMFdLQHBaAdLmWgIR0CYo+8W9DhMdX2UKGgGR8Bmv0jFAE+xaAdLS2gIR0CYpBXRw6yTdX2UKGgGR8BfmGHHmzSkaAdLP2gIR0CYpB1YhdMTdX2UKGgGR8BwHGBwuM/AaAdLZWgIR0CYpDSy+pOvdX2UKGgGR8Bh7SUkfLcLaAdLSmgIR0CYpDuwX668dX2UKGgGR8BVNUX+ERJ3aAdLPGgIR0CYpOdOqNp/dX2UKGgGR8BwjMqslsxgaAdLXWgIR0CYpQAckt2+dX2UKGgGR8BYPPHPu5SWaAdLdmgIR0CYpQgmJFb3dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.9,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ModelPPO1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d90eb05e1845dd091915fc9318b5854feadbfb0dd5da9b092770c04dd4924b77
3
+ size 88362
ModelPPO1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60ea8c6d8cbbce6faf20cb284c9a2616cd0424beaed9ce70d57211aeecb4ec8d
3
+ size 43762
ModelPPO1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ModelPPO1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -795.59 +/- 312.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79f87db37520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79f87db375b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79f87db37640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79f87db376d0>", "_build": "<function ActorCriticPolicy._build at 0x79f87db37760>", "forward": "<function ActorCriticPolicy.forward at 0x79f87db377f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79f87db37880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79f87db37910>", "_predict": "<function ActorCriticPolicy._predict at 0x79f87db379a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79f87db37a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79f87db37ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79f87db37b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f87daded40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699008455511923035, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKCNOj5voHU/wb4VP5x8T7+aFpG+Q41avgAAAAAAAAAA6o+EPph4qD8jpVE/1AjavmfN2r4jtMW+AAAAAAAAAACzchG/VjsDPwNugL8jnYa/FM6uPgOrmj4AAAAAAAAAAO6kFL9Fnaw+U38ev762jL/mZy4/Xnb5PgAAAAAAAAAAD4NQv3XRFj/Yibq/De7QvykFNEAmA2M/AAAAAAAAAAAac4K9VJBkP4V1H77WoZC/hlw0P/774T4AAAAAAAAAAFbmZr8pp0Y+BSuLv821tb+7yFw/rVKZPgAAAAAAAAAAzWYfPIMwtD+Qnf4+f8urvaI3UrzVUBS+AAAAAAAAAAAzEym8H4yvP2RxQb4dt7e+MVcTPSn3Jj4AAAAAAAAAADNxJb21mwQ/Z/OWvT5WqL+GLJm+NvzavQAAAAAAAAAAZp/BvUmfjj898Hu+UoYav6fqHT0uNsa9AAAAAAAAAAAaVko9DjSDP1rnYz169oS/g/3gvVupdj4AAAAAAAAAAJb/gj4miwQ/ZSaFPt51fb8BQGK9DccovgAAAAAAAAAAzTDeO3ypsz9S0S8/JVymvmqeALwfTR++AAAAAAAAAAADfX6+5++uP/bzO782n6a+IoVRPhKqWj4AAAAAAAAAAFr/U77ES5Y/ICfkvpyKIL8IBfu7doIkPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHHNR5HEuQKMAWyUS3OMAXSUR0CYmQjwQUYbdX2UKGgGR8B1jgJSiudPaAdLYWgIR0CYmUZXuE26dX2UKGgGR8BgI0BuGbkPaAdLRmgIR0CYmXnSv1UVdX2UKGgGR8Bxj+5CngpCaAdLc2gIR0CYmZD2alUIdX2UKGgGR8BWzpNXYDkmaAdLWWgIR0CYmY1XvH94dX2UKGgGR8BXDFY+0PYnaAdLP2gIR0CYmbpzLfUGdX2UKGgGR8BYpMdcSoOyaAdLP2gIR0CYmcona37UdX2UKGgGR8BqkTJr+HafaAdLUGgIR0CYmeIBBAv+dX2UKGgGR0Az3dFOO802aAdLiWgIR0CYmd3hGYrsdX2UKGgGR8Bw137YTTOPaAdLWWgIR0CYmfFR51NhdX2UKGgGR8Bj6J4MWoFWaAdLX2gIR0CYmezl90A+dX2UKGgGR8BZAuhbnoxIaAdLRGgIR0CYmf3yI55rdX2UKGgGR8BY+B/EwWWQaAdLSmgIR0CYmfy6MBIXdX2UKGgGR8BurCI55qubaAdLZWgIR0CYmiWsijcmdX2UKGgGR8BxMiYgJTl1aAdLVWgIR0CYmlxzq8lHdX2UKGgGR8Bo9NzbN8mbaAdLY2gIR0CYmpAMlTm5dX2UKGgGR8BSZhUJfICEaAdLPmgIR0CYms6eoUBXdX2UKGgGR8BhyM1uR9w4aAdLNWgIR0CYmt+bExZddX2UKGgGR8BcEY/qxC6ZaAdLUWgIR0CYmwVBlcyFdX2UKGgGR8BlN+4I8hcJaAdLYWgIR0CYmxj59E1EdX2UKGgGR8BgvVLteD3/aAdLU2gIR0CYm0863iJgdX2UKGgGR8BiX1wkxASnaAdLTGgIR0CYm0rtE5QxdX2UKGgGR8BhcOS8rZrYaAdLSWgIR0CYm17tiQT3dX2UKGgGR8BTXJBsyi22aAdLYGgIR0CYm47ngYP5dX2UKGgGR8Bv522y9mHyaAdLXmgIR0CYm8bpu/DcdX2UKGgGR8BxepWuHN5daAdLXmgIR0CYm9o6S1VpdX2UKGgGR8Bzml7jT8YRaAdLXmgIR0CYm+hUR3/xdX2UKGgGR8BRdvV3EAHWaAdLT2gIR0CYm/tHxz7udX2UKGgGR8BgxUzoEB8yaAdLcGgIR0CYnDU5MlC1dX2UKGgGR8BP+p+2E0zkaAdLQGgIR0CYnFqt5le4dX2UKGgGR8BLlwgLZzxPaAdLSGgIR0CYnF6eoUBXdX2UKGgGR8BmmeUB4lhPaAdLdmgIR0CYnGgQ6IWQdX2UKGgGR8B7vvGHYYixaAdLYmgIR0CYnJWp6yB1dX2UKGgGR8B1Vxq59Vm0aAdLgmgIR0CYnND7qIJrdX2UKGgGR8BvQHsHB1s+aAdLSGgIR0CYnNnjABT5dX2UKGgGR8BhM8pb2USqaAdLWWgIR0CYnPENe+mFdX2UKGgGR8BsfMpobn5jaAdLU2gIR0CYnQH+IdlvdX2UKGgGR8BWi/t6X0GvaAdLWmgIR0CYnSsImgJ1dX2UKGgGR8BhbBKFqSHNaAdLQ2gIR0CYnTyksSTRdX2UKGgGR8BjOOnsLORlaAdLd2gIR0CYnUPSDyvtdX2UKGgGR8BF34Vh1DBuaAdLPWgIR0CYnZu8scyWdX2UKGgGR8BV0zufEn9faAdLPmgIR0CYnaSlnAZbdX2UKGgGR8B50qYc/+sHaAdLV2gIR0CYnbUh3aBadX2UKGgGR8B4eU3m3fALaAdLV2gIR0CYncvnr6cidX2UKGgGR8BoDx9Aood/aAdLbmgIR0CYndk1/DtPdX2UKGgGR8BlHsI/qxC6aAdLSmgIR0CYne/SYw7DdX2UKGgGR8Bq0YsXizcAaAdLRmgIR0CYngl3yI56dX2UKGgGR8BdABkqc3ERaAdLe2gIR0CYnlFh5PdmdX2UKGgGR8BpwOrMkhRqaAdLS2gIR0CYnl7HyVfNdX2UKGgGR8BZX3fyf+S9aAdLRGgIR0CYnquyeI2wdX2UKGgGR8BX2ois4ku6aAdLSGgIR0CYnrr2QGOddX2UKGgGR8Br28EC/47BaAdLgWgIR0CYnuDFqBVddX2UKGgGR8BhI7mOlwcYaAdLXWgIR0CYnu9roGILdX2UKGgGR8Bxui2E0zj4aAdLYWgIR0CYnvVIqbz9dX2UKGgGR8BihbnDBMzuaAdLWWgIR0CYnwVmjCYUdX2UKGgGR8BrmBiPQv6CaAdLbGgIR0CYnxqi48U3dX2UKGgGR8Bbr/Uz9CNTaAdLS2gIR0CYnyy5I6KcdX2UKGgGR8BiYZcJMQEqaAdLQmgIR0CYnzas6q82dX2UKGgGR8BIFZMURFqjaAdLOmgIR0CYnz+gUUO/dX2UKGgGR8Bc5w9mpVCHaAdLRWgIR0CYn1yXlbNbdX2UKGgGR8B1xm7voePraAdLVmgIR0CYn44ecQRPdX2UKGgGR8Bs3MrGza9LaAdLY2gIR0CYn7ssQNCrdX2UKGgGR8BdoGPT5O8DaAdLUWgIR0CYoATVDrqudX2UKGgGR8BZmW9g4OtoaAdLPGgIR0CYoC8rZrYXdX2UKGgGR8BCaRZuAI6baAdLfmgIR0CYoD/S6UaAdX2UKGgGR8Bo41WU8mrsaAdLTmgIR0CYoFrC3w1BdX2UKGgGR8BkuzDIikftaAdLOmgIR0CYoGnIhhYvdX2UKGgGR8By1kfigkC4aAdLVmgIR0CYoHcy31BddX2UKGgGR8BXWMK5TZQIaAdLTWgIR0CYoHu2qkuZdX2UKGgGR8B86+mzjWCmaAdLa2gIR0CYoIxlxwQ2dX2UKGgGR8B4njcHnlnzaAdLUmgIR0CYoNyD7IkrdX2UKGgGR8Bbqvr0J4SpaAdLXWgIR0CYoNx/NJOGdX2UKGgGR8BabH2VVxS6aAdLX2gIR0CYoP2oNutPdX2UKGgGR8Bpq1p9JBgNaAdLX2gIR0CYoVe4Cp3pdX2UKGgGR8B2hmTW5H3DaAdLZmgIR0CYoV+RHPNWdX2UKGgGR8Bi+L1ZkkKNaAdLV2gIR0CYoZqYJE6UdX2UKGgGR8Bx0mO/+Kj0aAdLSmgIR0CYoaMW43FUdX2UKGgGR8Bd5HC9AX2vaAdLQGgIR0CYobus90RwdX2UKGgGR8BrmQKWszVMaAdLfmgIR0CYocTsIE8rdX2UKGgGR8AHMGkep4r0aAdLRmgIR0CYohqIJqqPdX2UKGgGR8BVrClJpWWAaAdLe2gIR0CYoj5hz/6wdX2UKGgGR8BVoBxHXmNjaAdLPWgIR0CYomNLlFMJdX2UKGgGR8BHIt5dGAkLaAdLYWgIR0CYomrSmZVodX2UKGgGR8BgZLvuw5eaaAdLWGgIR0CYonOx0MgEdX2UKGgGR8Bm+ltTDO1OaAdLSmgIR0CYopAFgUlBdX2UKGgGR8BLtR+az/p/aAdLT2gIR0CYoq+1jRUndX2UKGgGR8BPul5OafBfaAdLdWgIR0CYotOSGJvYdX2UKGgGR8BVRwRTS9dvaAdLdGgIR0CYoxuogmqpdX2UKGgGR8Bd8tPci4axaAdLSGgIR0CYo1JSBK+SdX2UKGgGR8Bo6Zltj0+UaAdLSWgIR0CYo2Iz3yqddX2UKGgGR8Bc4kKu0TlDaAdLV2gIR0CYo2r5qM3qdX2UKGgGR8BxjSkk8ifQaAdLZmgIR0CYo8zT4L1FdX2UKGgGR8BmYMFdLQHBaAdLmWgIR0CYo+8W9DhMdX2UKGgGR8Bmv0jFAE+xaAdLS2gIR0CYpBXRw6yTdX2UKGgGR8BfmGHHmzSkaAdLP2gIR0CYpB1YhdMTdX2UKGgGR8BwHGBwuM/AaAdLZWgIR0CYpDSy+pOvdX2UKGgGR8Bh7SUkfLcLaAdLSmgIR0CYpDuwX668dX2UKGgGR8BVNUX+ERJ3aAdLPGgIR0CYpOdOqNp/dX2UKGgGR8BwjMqslsxgaAdLXWgIR0CYpQAckt2+dX2UKGgGR8BYPPHPu5SWaAdLdmgIR0CYpQgmJFb3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.9, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (68.6 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -795.5940112, "std_reward": 312.710695231623, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-03T11:32:03.775205"}