Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ datasets:
|
|
9 |
- unicamp-dl/mmarco
|
10 |
---
|
11 |
|
12 |
-
# LazarusNLP/
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
@@ -29,7 +29,7 @@ Then you can use the model like this:
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
-
model = SentenceTransformer('LazarusNLP/
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
@@ -55,8 +55,8 @@ def mean_pooling(model_output, attention_mask):
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/
|
59 |
-
model = AutoModel.from_pretrained('LazarusNLP/
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -78,7 +78,7 @@ print(sentence_embeddings)
|
|
78 |
|
79 |
<!--- Describe how your model was evaluated -->
|
80 |
|
81 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/
|
82 |
|
83 |
|
84 |
## Training
|
|
|
9 |
- unicamp-dl/mmarco
|
10 |
---
|
11 |
|
12 |
+
# LazarusNLP/s-indobert-base-mmarco
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('LazarusNLP/s-indobert-base-mmarco')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/s-indobert-base-mmarco')
|
59 |
+
model = AutoModel.from_pretrained('LazarusNLP/s-indobert-base-mmarco')
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
78 |
|
79 |
<!--- Describe how your model was evaluated -->
|
80 |
|
81 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/s-indobert-base-mmarco)
|
82 |
|
83 |
|
84 |
## Training
|