w11wo commited on
Commit
bca7461
1 Parent(s): a82f53c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - bleu
7
+ model-index:
8
+ - name: indo-t5-base-nusax
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # indo-t5-base-nusax
16
+
17
+ This model is a fine-tuned version of [lazarus-project/indo-t5-base](https://huggingface.co/lazarus-project/indo-t5-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.2604
20
+ - Bleu: 4.1139
21
+ - Gen Len: 18.6052
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0002
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 8
46
+ - total_train_batch_size: 256
47
+ - total_eval_batch_size: 128
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - training_steps: 500
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
56
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
57
+ | 1.8951 | 3.01 | 250 | 2.2655 | 3.9246 | 18.6281 |
58
+ | 1.5435 | 6.02 | 500 | 2.2604 | 4.1139 | 18.6052 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.27.1
64
+ - Pytorch 2.0.0+cu117
65
+ - Datasets 2.9.0
66
+ - Tokenizers 0.13.2