Lauther commited on
Commit
3314e8e
·
verified ·
1 Parent(s): 5d2a6a4

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:5220
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: Identify the column that stores the uncertainty value.
12
+ sentences:
13
+ - "What is measuring equipment?\nMeasuring equipment refers to the devices that\
14
+ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\
15
+ \ number for identification.\n- A technical name, such as transmitter, plate,\
16
+ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\
17
+ \ equipment is assigned to a measurement system, it is given a unique identifier\
18
+ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\
19
+ \ considered in use in a measurement system.\n- If it does not have a tag, it\
20
+ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\
21
+ The type of equipment assigned to a measurement system depends on the technology\
22
+ \ used, for example:\n1. Differential technology (for gas measurement):\n -\
23
+ \ Static pressure transmitters\n - Differential pressure transmitters\n \
24
+ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\
25
+ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\
26
+ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \
27
+ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\
28
+ - A measurement system can have multiple pieces of equipment.\n- However, a piece\
29
+ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\
30
+ - The database includes a special table to manage the list of equipment assigned\
31
+ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\
32
+ \ are searching for operational equipment assigned to a measurement system.\n\
33
+ - If a user is looking for spare or unused equipment, they are searching for equipment\
34
+ \ not listed in the tagged equipment table.\n- Commonly used when user refers\
35
+ \ directly to an \"\"Equipment Tag\""
36
+ - 'What is equipment calibration?
37
+
38
+ Calibration is a metrological verification process used to ensure the accuracy
39
+ of measurement equipment. It is performed periodically, based on intervals set
40
+ by the company or a regulatory body.
41
+
42
+
43
+ Purpose of calibration:
44
+
45
+ The calibration process corrects any deviations in how the equipment measures
46
+ physical magnitudes (variables). This ensures the equipment provides accurate
47
+ and reliable data.
48
+
49
+
50
+ Calibration cycles:
51
+
52
+ There are two main calibration cycles:
53
+
54
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
55
+ are made. This cycle is almost always implemented.
56
+
57
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
58
+ are made. This cycle is used depending on regulatory requirements.
59
+
60
+
61
+ Calibration uncertainty:
62
+
63
+ - Uncertainty is included in the results of a calibration.
64
+
65
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
66
+ which also affects the uncertainty of the measured variable or magnitude.'
67
+ - 'What kind of data store an equipment?
68
+
69
+ Equipments can capture meteorological data, such as pressure, temperature, and
70
+ volume (magnitudes). This data is essential for users to perform various calculations.
71
+
72
+
73
+ Data storage:
74
+
75
+ - The measured values are stored in a special table in the database for magnitudes.
76
+ This table contains the values of the variables captured by the equipments.
77
+
78
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
79
+ temperature, or volume readings). **They are not calculated values**, such as
80
+ uncertainty.
81
+
82
+ - The values stored in the variable values table are **different** from variable
83
+ uncertainty values, which are calculated separately and represent the margin of
84
+ error.
85
+
86
+
87
+ Accessing the data:
88
+
89
+ - Users typically access the data by referring to the readings from the measurement
90
+ system, not directly from the individual equipments.
91
+
92
+ - The readings are stored in a "variable values" table within the database.
93
+
94
+
95
+ Linking variable names:
96
+
97
+ If the user needs to know the name of a variable, they must link the data to another
98
+ table that stores information about the types of variables.'
99
+ - source_sentence: SELECT * FROM EquipmentType LIMIT 1
100
+ sentences:
101
+ - 'What kind of data store an equipment?
102
+
103
+ Equipments can capture meteorological data, such as pressure, temperature, and
104
+ volume (magnitudes). This data is essential for users to perform various calculations.
105
+
106
+
107
+ Data storage:
108
+
109
+ - The measured values are stored in a special table in the database for magnitudes.
110
+ This table contains the values of the variables captured by the equipments.
111
+
112
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
113
+ temperature, or volume readings). **They are not calculated values**, such as
114
+ uncertainty.
115
+
116
+ - The values stored in the variable values table are **different** from variable
117
+ uncertainty values, which are calculated separately and represent the margin of
118
+ error.
119
+
120
+
121
+ Accessing the data:
122
+
123
+ - Users typically access the data by referring to the readings from the measurement
124
+ system, not directly from the individual equipments.
125
+
126
+ - The readings are stored in a "variable values" table within the database.
127
+
128
+
129
+ Linking variable names:
130
+
131
+ If the user needs to know the name of a variable, they must link the data to another
132
+ table that stores information about the types of variables.'
133
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
134
+ \ daily or hourly reports to provide users with operational data. These reports\
135
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
136
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
137
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
138
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
139
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
140
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
141
+ \ are linked to a Modbus table. This table contains the names corresponding to\
142
+ \ each value in the reports, making it easier to interpret the data."
143
+ - 'What is a flow computer?
144
+
145
+ A flow computer is a device used in measurement engineering. It collects analog
146
+ and digital data from flow meters and other sensors.
147
+
148
+
149
+ Key features of a flow computer:
150
+
151
+ - It has a unique name, firmware version, and manufacturer information.
152
+
153
+ - It is designed to record and process data such as temperature, pressure, and
154
+ fluid volume (for gases or oils).
155
+
156
+
157
+ Main function:
158
+
159
+ The flow computer sends the collected data to a measurement system. This allows
160
+ measurement engineers to analyze the data and perform their tasks effectively.'
161
+ - source_sentence: What tables store measurement system data?
162
+ sentences:
163
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
164
+ \ and reliability of results obtained from equipment or measurement systems. It\
165
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
166
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
167
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
168
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
169
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
170
+ \ serves as a starting point for further calculations related to the equipment.\n\
171
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
172
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
173
+ \ the individual variables (magnitudes) and represents the combined margin of\
174
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
175
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
176
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
177
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
178
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
179
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
180
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
181
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
182
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
183
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
184
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
185
+ - To find the uncertainty of the measurement system, join the measurement systems\
186
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
187
+ \ of a specific variable (magnitude), join the measurement systems table with\
188
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
189
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
190
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
191
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
192
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
193
+ \ systems table + uncertainty of magnitudes table)."
194
+ - "What is a measurement system?\nA measurement system, also referred to as a delivery\
195
+ \ point, measurement point, or reception point, is used to measure and monitor\
196
+ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\
197
+ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\
198
+ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\
199
+ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\
200
+ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\
201
+ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\
202
+ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\
203
+ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\
204
+ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\
205
+ \ systems:\nMeasurement systems are classified based on the stage of the process\
206
+ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\
207
+ - Appropriation\n- Custody\n- Production Poços"
208
+ - 'What do measurement equipment measure?
209
+
210
+ Each equipment measures a physical magnitude, also known as a variable. Based
211
+ on the type of variable they measure, devices are classified into different categories.
212
+
213
+
214
+ Equipment classification:
215
+
216
+ - Primary meter: Assigned by default to equipments like orifice plates.
217
+
218
+ - Secondary meter: Assigned by default to equipments like transmitters.
219
+
220
+ - Tertiary meter: Used for other types of equipments.
221
+
222
+
223
+ Equipment types in the database:
224
+
225
+ The database includes a table listing all equipment types. Examples of equipment
226
+ types are:
227
+
228
+ - Differential pressure transmitters
229
+
230
+ - RTDs (Resistance Temperature Detectors)
231
+
232
+ - Orifice plates
233
+
234
+ - Multivariable transmitters
235
+
236
+ - Ultrasonic meters
237
+
238
+
239
+ Meteorological checks for equipments:
240
+
241
+ Each equipment type is assigned a meteorological check, which can be either:
242
+
243
+ - Calibration: To ensure measurement accuracy.
244
+
245
+ - Inspection: To verify proper functioning.
246
+
247
+
248
+ Data storage in tables:
249
+
250
+ The database also includes a separate table for equipment classifications, which
251
+ are:
252
+
253
+ - Primary meter
254
+
255
+ - Secondary meter
256
+
257
+ - Tertiary meter
258
+
259
+ So, an equipment has equipment types and this types has classifications.'
260
+ - source_sentence: What is the table structure for equipment types?
261
+ sentences:
262
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
263
+ \ daily or hourly reports to provide users with operational data. These reports\
264
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
265
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
266
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
267
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
268
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
269
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
270
+ \ are linked to a Modbus table. This table contains the names corresponding to\
271
+ \ each value in the reports, making it easier to interpret the data."
272
+ - "What is measuring equipment?\nMeasuring equipment refers to the devices that\
273
+ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\
274
+ \ number for identification.\n- A technical name, such as transmitter, plate,\
275
+ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\
276
+ \ equipment is assigned to a measurement system, it is given a unique identifier\
277
+ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\
278
+ \ considered in use in a measurement system.\n- If it does not have a tag, it\
279
+ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\
280
+ The type of equipment assigned to a measurement system depends on the technology\
281
+ \ used, for example:\n1. Differential technology (for gas measurement):\n -\
282
+ \ Static pressure transmitters\n - Differential pressure transmitters\n \
283
+ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\
284
+ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\
285
+ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \
286
+ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\
287
+ - A measurement system can have multiple pieces of equipment.\n- However, a piece\
288
+ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\
289
+ - The database includes a special table to manage the list of equipment assigned\
290
+ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\
291
+ \ are searching for operational equipment assigned to a measurement system.\n\
292
+ - If a user is looking for spare or unused equipment, they are searching for equipment\
293
+ \ not listed in the tagged equipment table.\n- Commonly used when user refers\
294
+ \ directly to an \"\"Equipment Tag\""
295
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
296
+ \ and reliability of results obtained from equipment or measurement systems. It\
297
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
298
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
299
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
300
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
301
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
302
+ \ serves as a starting point for further calculations related to the equipment.\n\
303
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
304
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
305
+ \ the individual variables (magnitudes) and represents the combined margin of\
306
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
307
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
308
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
309
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
310
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
311
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
312
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
313
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
314
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
315
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
316
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
317
+ - To find the uncertainty of the measurement system, join the measurement systems\
318
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
319
+ \ of a specific variable (magnitude), join the measurement systems table with\
320
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
321
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
322
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
323
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
324
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
325
+ \ systems table + uncertainty of magnitudes table)."
326
+ - source_sentence: What columns store the uncertainty values?
327
+ sentences:
328
+ - "What is a measurement system?\nA measurement system, also referred to as a delivery\
329
+ \ point, measurement point, or reception point, is used to measure and monitor\
330
+ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\
331
+ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\
332
+ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\
333
+ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\
334
+ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\
335
+ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\
336
+ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\
337
+ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\
338
+ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\
339
+ \ systems:\nMeasurement systems are classified based on the stage of the process\
340
+ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\
341
+ - Appropriation\n- Custody\n- Production Poços"
342
+ - 'How are flow computers and measurement systems related?
343
+
344
+ Flow computers can have multiple systems assigned to them. However, a measurement
345
+ system can only be assigned to one flow computer.
346
+
347
+
348
+ Database terminology:
349
+
350
+ In the database, this relationship is referred to as:
351
+
352
+ - Meter streams
353
+
354
+ - Meter runs
355
+
356
+ - Sections
357
+
358
+
359
+ Storage of the relationship:
360
+
361
+ The relationship between a flow computer and its assigned measurement system is
362
+ stored in a special table.
363
+
364
+
365
+ User context:
366
+
367
+ When a user refers to a "meter stream," they are indicating that they are searching
368
+ for a measurement system assigned to a specific flow computer.'
369
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
370
+ \ and reliability of results obtained from equipment or measurement systems. It\
371
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
372
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
373
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
374
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
375
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
376
+ \ serves as a starting point for further calculations related to the equipment.\n\
377
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
378
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
379
+ \ the individual variables (magnitudes) and represents the combined margin of\
380
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
381
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
382
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
383
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
384
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
385
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
386
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
387
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
388
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
389
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
390
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
391
+ - To find the uncertainty of the measurement system, join the measurement systems\
392
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
393
+ \ of a specific variable (magnitude), join the measurement systems table with\
394
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
395
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
396
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
397
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
398
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
399
+ \ systems table + uncertainty of magnitudes table)."
400
+ datasets:
401
+ - Lauther/embeddings-train-semantic
402
+ pipeline_tag: sentence-similarity
403
+ library_name: sentence-transformers
404
+ ---
405
+
406
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
407
+
408
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
409
+
410
+ ## Model Details
411
+
412
+ ### Model Description
413
+ - **Model Type:** Sentence Transformer
414
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
415
+ - **Maximum Sequence Length:** 384 tokens
416
+ - **Output Dimensionality:** 768 dimensions
417
+ - **Similarity Function:** Cosine Similarity
418
+ - **Training Dataset:**
419
+ - [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic)
420
+ <!-- - **Language:** Unknown -->
421
+ <!-- - **License:** Unknown -->
422
+
423
+ ### Model Sources
424
+
425
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
426
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
427
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
428
+
429
+ ### Full Model Architecture
430
+
431
+ ```
432
+ SentenceTransformer(
433
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
434
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
435
+ (2): Normalize()
436
+ )
437
+ ```
438
+
439
+ ## Usage
440
+
441
+ ### Direct Usage (Sentence Transformers)
442
+
443
+ First install the Sentence Transformers library:
444
+
445
+ ```bash
446
+ pip install -U sentence-transformers
447
+ ```
448
+
449
+ Then you can load this model and run inference.
450
+ ```python
451
+ from sentence_transformers import SentenceTransformer
452
+
453
+ # Download from the 🤗 Hub
454
+ model = SentenceTransformer("Lauther/emb-all-mpnet-base-v2-3e")
455
+ # Run inference
456
+ sentences = [
457
+ 'What columns store the uncertainty values?',
458
+ 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
459
+ 'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).',
460
+ ]
461
+ embeddings = model.encode(sentences)
462
+ print(embeddings.shape)
463
+ # [3, 768]
464
+
465
+ # Get the similarity scores for the embeddings
466
+ similarities = model.similarity(embeddings, embeddings)
467
+ print(similarities.shape)
468
+ # [3, 3]
469
+ ```
470
+
471
+ <!--
472
+ ### Direct Usage (Transformers)
473
+
474
+ <details><summary>Click to see the direct usage in Transformers</summary>
475
+
476
+ </details>
477
+ -->
478
+
479
+ <!--
480
+ ### Downstream Usage (Sentence Transformers)
481
+
482
+ You can finetune this model on your own dataset.
483
+
484
+ <details><summary>Click to expand</summary>
485
+
486
+ </details>
487
+ -->
488
+
489
+ <!--
490
+ ### Out-of-Scope Use
491
+
492
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
493
+ -->
494
+
495
+ <!--
496
+ ## Bias, Risks and Limitations
497
+
498
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
499
+ -->
500
+
501
+ <!--
502
+ ### Recommendations
503
+
504
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
505
+ -->
506
+
507
+ ## Training Details
508
+
509
+ ### Training Dataset
510
+
511
+ #### embeddings-train-semantic
512
+
513
+ * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330)
514
+ * Size: 5,220 training samples
515
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
516
+ * Approximate statistics based on the first 1000 samples:
517
+ | | sentence1 | sentence2 | score |
518
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------|
519
+ | type | string | string | float |
520
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.47 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 108 tokens</li><li>mean: 214.04 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> |
521
+ * Samples:
522
+ | sentence1 | sentence2 | score |
523
+ |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
524
+ | <code>What is the data type of differential pressure in the measurement system?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> |
525
+ | <code>What is the structure of the &&&equipment_data&&& table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.35000000000000003</code> |
526
+ | <code>Find the columns in the flow computer table that identify the flow computer.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
527
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
528
+ ```json
529
+ {
530
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
531
+ }
532
+ ```
533
+
534
+ ### Evaluation Dataset
535
+
536
+ #### embeddings-train-semantic
537
+
538
+ * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330)
539
+ * Size: 652 evaluation samples
540
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
541
+ * Approximate statistics based on the first 652 samples:
542
+ | | sentence1 | sentence2 | score |
543
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------|
544
+ | type | string | string | float |
545
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.03 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 108 tokens</li><li>mean: 212.06 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.9</li></ul> |
546
+ * Samples:
547
+ | sentence1 | sentence2 | score |
548
+ |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
549
+ | <code>How can I filter uncertainty reports by equipment tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.09999999999999999</code> |
550
+ | <code>What is the purpose of the flow_data table?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> |
551
+ | <code>What is the column name for the report date in the Reports table?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.1</code> |
552
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
553
+ ```json
554
+ {
555
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
556
+ }
557
+ ```
558
+
559
+ ### Training Hyperparameters
560
+ #### Non-Default Hyperparameters
561
+
562
+ - `eval_strategy`: steps
563
+ - `per_device_train_batch_size`: 4
564
+ - `per_device_eval_batch_size`: 4
565
+ - `gradient_accumulation_steps`: 4
566
+ - `learning_rate`: 2e-05
567
+ - `warmup_ratio`: 0.1
568
+
569
+ #### All Hyperparameters
570
+ <details><summary>Click to expand</summary>
571
+
572
+ - `overwrite_output_dir`: False
573
+ - `do_predict`: False
574
+ - `eval_strategy`: steps
575
+ - `prediction_loss_only`: True
576
+ - `per_device_train_batch_size`: 4
577
+ - `per_device_eval_batch_size`: 4
578
+ - `per_gpu_train_batch_size`: None
579
+ - `per_gpu_eval_batch_size`: None
580
+ - `gradient_accumulation_steps`: 4
581
+ - `eval_accumulation_steps`: None
582
+ - `torch_empty_cache_steps`: None
583
+ - `learning_rate`: 2e-05
584
+ - `weight_decay`: 0.0
585
+ - `adam_beta1`: 0.9
586
+ - `adam_beta2`: 0.999
587
+ - `adam_epsilon`: 1e-08
588
+ - `max_grad_norm`: 1.0
589
+ - `num_train_epochs`: 3
590
+ - `max_steps`: -1
591
+ - `lr_scheduler_type`: linear
592
+ - `lr_scheduler_kwargs`: {}
593
+ - `warmup_ratio`: 0.1
594
+ - `warmup_steps`: 0
595
+ - `log_level`: passive
596
+ - `log_level_replica`: warning
597
+ - `log_on_each_node`: True
598
+ - `logging_nan_inf_filter`: True
599
+ - `save_safetensors`: True
600
+ - `save_on_each_node`: False
601
+ - `save_only_model`: False
602
+ - `restore_callback_states_from_checkpoint`: False
603
+ - `no_cuda`: False
604
+ - `use_cpu`: False
605
+ - `use_mps_device`: False
606
+ - `seed`: 42
607
+ - `data_seed`: None
608
+ - `jit_mode_eval`: False
609
+ - `use_ipex`: False
610
+ - `bf16`: False
611
+ - `fp16`: False
612
+ - `fp16_opt_level`: O1
613
+ - `half_precision_backend`: auto
614
+ - `bf16_full_eval`: False
615
+ - `fp16_full_eval`: False
616
+ - `tf32`: None
617
+ - `local_rank`: 0
618
+ - `ddp_backend`: None
619
+ - `tpu_num_cores`: None
620
+ - `tpu_metrics_debug`: False
621
+ - `debug`: []
622
+ - `dataloader_drop_last`: False
623
+ - `dataloader_num_workers`: 0
624
+ - `dataloader_prefetch_factor`: None
625
+ - `past_index`: -1
626
+ - `disable_tqdm`: False
627
+ - `remove_unused_columns`: True
628
+ - `label_names`: None
629
+ - `load_best_model_at_end`: False
630
+ - `ignore_data_skip`: False
631
+ - `fsdp`: []
632
+ - `fsdp_min_num_params`: 0
633
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
634
+ - `fsdp_transformer_layer_cls_to_wrap`: None
635
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
636
+ - `deepspeed`: None
637
+ - `label_smoothing_factor`: 0.0
638
+ - `optim`: adamw_torch
639
+ - `optim_args`: None
640
+ - `adafactor`: False
641
+ - `group_by_length`: False
642
+ - `length_column_name`: length
643
+ - `ddp_find_unused_parameters`: None
644
+ - `ddp_bucket_cap_mb`: None
645
+ - `ddp_broadcast_buffers`: False
646
+ - `dataloader_pin_memory`: True
647
+ - `dataloader_persistent_workers`: False
648
+ - `skip_memory_metrics`: True
649
+ - `use_legacy_prediction_loop`: False
650
+ - `push_to_hub`: False
651
+ - `resume_from_checkpoint`: None
652
+ - `hub_model_id`: None
653
+ - `hub_strategy`: every_save
654
+ - `hub_private_repo`: None
655
+ - `hub_always_push`: False
656
+ - `gradient_checkpointing`: False
657
+ - `gradient_checkpointing_kwargs`: None
658
+ - `include_inputs_for_metrics`: False
659
+ - `include_for_metrics`: []
660
+ - `eval_do_concat_batches`: True
661
+ - `fp16_backend`: auto
662
+ - `push_to_hub_model_id`: None
663
+ - `push_to_hub_organization`: None
664
+ - `mp_parameters`:
665
+ - `auto_find_batch_size`: False
666
+ - `full_determinism`: False
667
+ - `torchdynamo`: None
668
+ - `ray_scope`: last
669
+ - `ddp_timeout`: 1800
670
+ - `torch_compile`: False
671
+ - `torch_compile_backend`: None
672
+ - `torch_compile_mode`: None
673
+ - `dispatch_batches`: None
674
+ - `split_batches`: None
675
+ - `include_tokens_per_second`: False
676
+ - `include_num_input_tokens_seen`: False
677
+ - `neftune_noise_alpha`: None
678
+ - `optim_target_modules`: None
679
+ - `batch_eval_metrics`: False
680
+ - `eval_on_start`: False
681
+ - `use_liger_kernel`: False
682
+ - `eval_use_gather_object`: False
683
+ - `average_tokens_across_devices`: False
684
+ - `prompts`: None
685
+ - `batch_sampler`: batch_sampler
686
+ - `multi_dataset_batch_sampler`: proportional
687
+
688
+ </details>
689
+
690
+ ### Training Logs
691
+ | Epoch | Step | Training Loss | Validation Loss |
692
+ |:------:|:----:|:-------------:|:---------------:|
693
+ | 0.0307 | 10 | 0.249 | - |
694
+ | 0.0613 | 20 | 0.1761 | - |
695
+ | 0.0920 | 30 | 0.1811 | - |
696
+ | 0.1226 | 40 | 0.1274 | - |
697
+ | 0.1533 | 50 | 0.1171 | 0.0296 |
698
+ | 0.1839 | 60 | 0.1301 | - |
699
+ | 0.2146 | 70 | 0.1172 | - |
700
+ | 0.2452 | 80 | 0.1411 | - |
701
+ | 0.2759 | 90 | 0.0878 | - |
702
+ | 0.3065 | 100 | 0.0818 | 0.0212 |
703
+ | 0.3372 | 110 | 0.0988 | - |
704
+ | 0.3678 | 120 | 0.0741 | - |
705
+ | 0.3985 | 130 | 0.0864 | - |
706
+ | 0.4291 | 140 | 0.0688 | - |
707
+ | 0.4598 | 150 | 0.0927 | 0.0190 |
708
+ | 0.4904 | 160 | 0.0773 | - |
709
+ | 0.5211 | 170 | 0.0824 | - |
710
+ | 0.5517 | 180 | 0.0815 | - |
711
+ | 0.5824 | 190 | 0.0696 | - |
712
+ | 0.6130 | 200 | 0.0624 | 0.0205 |
713
+ | 0.6437 | 210 | 0.0792 | - |
714
+ | 0.6743 | 220 | 0.0775 | - |
715
+ | 0.7050 | 230 | 0.0832 | - |
716
+ | 0.7356 | 240 | 0.0833 | - |
717
+ | 0.7663 | 250 | 0.0617 | 0.0164 |
718
+ | 0.7969 | 260 | 0.0462 | - |
719
+ | 0.8276 | 270 | 0.0706 | - |
720
+ | 0.8582 | 280 | 0.065 | - |
721
+ | 0.8889 | 290 | 0.0911 | - |
722
+ | 0.9195 | 300 | 0.0506 | 0.0162 |
723
+ | 0.9502 | 310 | 0.0699 | - |
724
+ | 0.9808 | 320 | 0.0483 | - |
725
+ | 1.0092 | 330 | 0.0508 | - |
726
+ | 1.0398 | 340 | 0.0624 | - |
727
+ | 1.0705 | 350 | 0.0578 | 0.0152 |
728
+ | 1.1011 | 360 | 0.0694 | - |
729
+ | 1.1318 | 370 | 0.065 | - |
730
+ | 1.1625 | 380 | 0.058 | - |
731
+ | 1.1931 | 390 | 0.0632 | - |
732
+ | 1.2238 | 400 | 0.0476 | 0.0145 |
733
+ | 1.2544 | 410 | 0.0316 | - |
734
+ | 1.2851 | 420 | 0.066 | - |
735
+ | 1.3157 | 430 | 0.0594 | - |
736
+ | 1.3464 | 440 | 0.0698 | - |
737
+ | 1.3770 | 450 | 0.0626 | 0.0145 |
738
+ | 1.4077 | 460 | 0.0505 | - |
739
+ | 1.4383 | 470 | 0.0564 | - |
740
+ | 1.4690 | 480 | 0.0423 | - |
741
+ | 1.4996 | 490 | 0.0515 | - |
742
+ | 1.5303 | 500 | 0.0557 | 0.0136 |
743
+ | 1.5609 | 510 | 0.0508 | - |
744
+ | 1.5916 | 520 | 0.0345 | - |
745
+ | 1.6222 | 530 | 0.052 | - |
746
+ | 1.6529 | 540 | 0.0465 | - |
747
+ | 1.6835 | 550 | 0.0369 | 0.0141 |
748
+ | 1.7142 | 560 | 0.0393 | - |
749
+ | 1.7448 | 570 | 0.0458 | - |
750
+ | 1.7755 | 580 | 0.0497 | - |
751
+ | 1.8061 | 590 | 0.0616 | - |
752
+ | 1.8368 | 600 | 0.045 | 0.0135 |
753
+ | 1.8674 | 610 | 0.0446 | - |
754
+ | 1.8981 | 620 | 0.0471 | - |
755
+ | 1.9287 | 630 | 0.0421 | - |
756
+ | 1.9594 | 640 | 0.0414 | - |
757
+ | 1.9900 | 650 | 0.0634 | 0.0130 |
758
+ | 2.0184 | 660 | 0.0344 | - |
759
+ | 2.0490 | 670 | 0.0547 | - |
760
+ | 2.0797 | 680 | 0.0429 | - |
761
+ | 2.1103 | 690 | 0.037 | - |
762
+ | 2.1410 | 700 | 0.039 | 0.0131 |
763
+ | 2.1716 | 710 | 0.0298 | - |
764
+ | 2.2023 | 720 | 0.0244 | - |
765
+ | 2.2330 | 730 | 0.0427 | - |
766
+ | 2.2636 | 740 | 0.0397 | - |
767
+ | 2.2943 | 750 | 0.0506 | 0.0130 |
768
+ | 2.3249 | 760 | 0.0334 | - |
769
+ | 2.3556 | 770 | 0.0338 | - |
770
+ | 2.3862 | 780 | 0.045 | - |
771
+ | 2.4169 | 790 | 0.0363 | - |
772
+ | 2.4475 | 800 | 0.0415 | 0.0129 |
773
+ | 2.4782 | 810 | 0.041 | - |
774
+ | 2.5088 | 820 | 0.0413 | - |
775
+ | 2.5395 | 830 | 0.0397 | - |
776
+ | 2.5701 | 840 | 0.0483 | - |
777
+ | 2.6008 | 850 | 0.0312 | 0.0127 |
778
+ | 2.6314 | 860 | 0.0508 | - |
779
+ | 2.6621 | 870 | 0.0375 | - |
780
+ | 2.6927 | 880 | 0.0354 | - |
781
+ | 2.7234 | 890 | 0.0427 | - |
782
+ | 2.7540 | 900 | 0.0231 | 0.0125 |
783
+ | 2.7847 | 910 | 0.0374 | - |
784
+ | 2.8153 | 920 | 0.0394 | - |
785
+ | 2.8460 | 930 | 0.0236 | - |
786
+ | 2.8766 | 940 | 0.0393 | - |
787
+ | 2.9073 | 950 | 0.0419 | 0.0122 |
788
+ | 2.9379 | 960 | 0.0309 | - |
789
+ | 2.9686 | 970 | 0.031 | - |
790
+
791
+
792
+ ### Framework Versions
793
+ - Python: 3.11.0
794
+ - Sentence Transformers: 3.4.0
795
+ - Transformers: 4.48.1
796
+ - PyTorch: 2.5.1+cu124
797
+ - Accelerate: 1.3.0
798
+ - Datasets: 3.2.0
799
+ - Tokenizers: 0.21.0
800
+
801
+ ## Citation
802
+
803
+ ### BibTeX
804
+
805
+ #### Sentence Transformers
806
+ ```bibtex
807
+ @inproceedings{reimers-2019-sentence-bert,
808
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
809
+ author = "Reimers, Nils and Gurevych, Iryna",
810
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
811
+ month = "11",
812
+ year = "2019",
813
+ publisher = "Association for Computational Linguistics",
814
+ url = "https://arxiv.org/abs/1908.10084",
815
+ }
816
+ ```
817
+
818
+ <!--
819
+ ## Glossary
820
+
821
+ *Clearly define terms in order to be accessible across audiences.*
822
+ -->
823
+
824
+ <!--
825
+ ## Model Card Authors
826
+
827
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
828
+ -->
829
+
830
+ <!--
831
+ ## Model Card Contact
832
+
833
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
834
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6416d0e3f37319094684957e4ccdb17cb6414e8a76e693d1b26e1cc918fc81c
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff