Larxel commited on
Commit
a2365f7
·
1 Parent(s): b5fdb3d

First RL model commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.08 +/- 15.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8fcbf6eee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8fcbf6ef70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8fcbf71040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8fcbf710d0>", "_build": "<function ActorCriticPolicy._build at 0x7f8fcbf71160>", "forward": "<function ActorCriticPolicy.forward at 0x7f8fcbf711f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8fcbf71280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8fcbf71310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8fcbf713a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8fcbf71430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8fcbf714c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8fcbf71550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8fcbf706c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOWuxRnaus7LlTz7yGGsgvLtgbAyrhAI06tbNnYW35F+Kf6tMVYEpcIGHFudcxeBc15xx0Ud+oQ0MxNnJ1QHfkJfjBuUvTp+7QUscxHqLLTzH6m4sTDKE9xLCZpRc17pzbcRjT4D/VSv1gieRqwtUTcsBmo9yd5McNzjUu7fIBlfyqXVQ1BUm29ofaVK1KyFROWleV7uj/d4VdxwfmcvjVFAPv57cncn6JT3xMilyYBgeOZeqvdhmjoh4fFRC6UighS3sh/Fi+aVy7sS2Z4rholYs47wI8dbk0h6o0FWXiaRCLhqBM62aJ8/AxPcIsnREvLr1a9t+oCMWmAWUL0dP0E7FpgjknaQQLdCtQU8chFCGTVco2J9dVcGTNWPP2sOUECs5eRqpwoDWVx0bpOA+RSyyDjCMoslWlsPt0rraV/zYwjh7R6ucGOoNnzHcvfASslHHstdpuz+iJbJBCIxubrSJ/zLkFRsrgd6sYqkY4n+N8DsDgYRL6Blr1yuPXgrBDucWj0/x77bHim3xJv/k0/PX6koXeLz4iMpzuDm3Eu5xQyKhfdMOyzLrgc483wr7YLl+oTTSTFeUj1P9GUJzowdlIwqXd7TrJ6RbEHK8tv0ENNRTKVLwS3GPIugbO01EIbhqQKSAn51KSsrg7J//RVwy/qBdiOoD78YJMh2sVX+g8iBDdO8QRUjXuixJNpfQxOOn6zXpUP/qzN9CFlsxBBQ8kV0bRLoqpy6oJTjaSELx3OL4OG51y4d55UIvFqk4HslO/Gl6b6MKOpIRMTUTLxbkyD5ViTcDAvHGChbOmxXqoIN41yuQ9+deoHmM4eMDZ6q3rQWwYkheumjKjVzID4ulwIA8cRN7bDZ9G9jIuhPHkiUQ/9MBYUapeYAw7Fgt8z19zXUxeTpacc1QuEdaZ1fCqH7KtZHvlYb4NnI19OnduIGV9wx9XnX7D9eIPqWSNArhk5KN6vH+eCWhf3qQghua9wsDGwdt5ckt7wn07MOz7+9kiu8KzB3RGV3yjw1ZTXKZBztmJYUxtLN9vhiKxXhP8xvW1PHYZwO0V/qRrv7cFD9U1tQcMoMdOUQE/nYxFR0yUvdxu30+q+DV7Q8FRqKYoLp9PGARETzkgPrIvp49bzxOOX2qUxI/gqDufLOdz8kj1JSjMcPY6+HNdntF+f/HvvO5yzGB0BnuHek+fUPHD5Toq4XjSNq1Pf31+9laU1M1HhR19XkrUXA8hoNX8z+1hz8Qe7K6E/rqZbxDPgbAafFt1YMqfjfPhtWeD4gAH7NjlE8cjTfXzoftwzWNcNDms3afVHHUk0dai/72GR8dK2n35hsTb4pzfjycdhhr4Zl4EwsvUSO+TBZjdEojp+0jcNKsMimkuq2Ru9ZWgfWEaq6tpDPz7hS4hZjTZ+ILJ2Xx5yegVZkeiv91i9I3k7tj8icwT7ijroXVIKEU0AWiKbL1NHCRpDFpyi3frQcndg6erOx8s5+APJSSCY37vsHQ6ujYo0K6sESZiNfiQpSFn9a+Gk6l0uuDRhC1e+dGa+EYL0ufvess24yXyGWZJgvG1oOkelJcXiEIgJdRpg12RJGKK//2daDSYn+50QyhCI1Le+r8Y3AezJLCzfyNBkVbeDMiUTs28ijARkxKyJyV4jbzh8OWkkHHeoiA2IZBxhplntAe23Dmaj2JLmkxdH8xjErAfIL8TWjoMPBbd34OSlne3Cffu7QZuq4Qb7R92rMJ7LUg4imnwZT3uVF+wjWTbxPreuBuM2XPcxlojAlCCz7TOsrOY5yt2puJs+ewfMErC0iO95klHGskD2jjrimwIiSBUCHuEVkEFGlVtcY/KnKhm1JtG3gdpvOTnCOFfBAKLBO5XBkWnHZST29PXlhLvugfwTRLUwII3TsPz9gqhumSi+dD3YPKENiS7HchApm67G8G12X4s11RBjpIM/J1T8Gk4fvzP9taWdpAJQpjcMCQthf9vqSHcbw+pEjujdelbUqoFupWQROlXcxhyeeU+05aXEY+v0ioFMeRaXpr4PtsfVGicTYrtQvgouuws5OexekB9BoKP2OvMFvbjEaZlPFcKAJoKWuNf/R6p4GdU5CPjuXfSebFtSFITjS7B6/0ZJt58zXN13oTM8D/8pXlCs8vhI+hulqz2sv7CLnNKAMVgMEjrmH4HsSdumTl6fVXsGdb+zTgMwmh0bMG08ESOcHT61BvxShyWJjbbUkhIHq9bhT9u8b17gKuRs/T6Vq69t8uh27KJQAJpPKaJ2z75dPBt+cRPxyM2VRZR6EhqIGzEukqHFvzpLssbtHEmznCDWiE1H+g/I1zDk3I8uxuFQq9N9NOxlDQOKDBNOXZBq70QYSjLXiYJ3TqnLQYnxTpGE32XH9q6uRtbMsZB9cYtzyTjMobQU7obEPg9iVGCjI2azOLvm94Iws53+YuCgR5l2jHRU3csGBfVzyXYnVwyOUzVUkwOXTjM0xawMyEnroVeySc82T+o0qtNLKAPX4wv3er8GTLz99/fCYDqPjEV4pyh6okDFMR+77wIM3Qwc7oLNqgof5RR9KkikfJ3Jub9cbfQp8/DqdN6hvCrTf0uzfb05RAUFlf3qFz+AHEKe74Maa+Ozh2AK3mA2bG9q8D1KxJhY273RlkiIfoYUaZL65D3Sxs8Uv5T4kcSypfly/HCKDVNOUahQIvw9P3GxEV5ZwP77qJuM6MJkpMnIg4kGB0sPzk4CaQPLZHlI/RrjKsMtxtwHkYw04c7UZNDP4BWGqyP6GJrBw5ab2QmIW5qO+MMHriGzFO/8HdnEKUIfNqYtUpXiSRMiYO/UW0ilkIuhuzL8ZbbV4OvWqr7yrzrmH3ycFi0PSAShMaqHj8T6UpPUKiFYN5lxjq58Sa2nnq/u5GBnC2VwM92spfzgetttK/XUm8BUPcDqGiongN2Q7ZfJzoCzfIm4hkVvVghpBXUFv5Fi7hx38JroaUxYb2ebx7/tt3zZ52wlStuhw/7BlnwEfaRv4r680kfl/rvUkNMxeCd+x2saYea60/OBLSxkwW0LO3ZrDyKNYHOpJNO8YA3yQKSwoV+Jk+qNgKR5yqrr7YeDaXv9KTWs+MhVwrzPGzC8WGwktVpEb8iyCPHDlxaeKHitzFCQ5r8KFM2q/d/M8FaaCX0pDrR5C69a4vgxo93j/8V8bm/osYNC0I3mj2/L574nxSzx1rZQJ2LcC2imNYMdshuBpqihc1B6b/BIGnlBlfpGhTLFmtS9GL1ubhtFM/LppacGAH2K6y6QQzCRqoDWr1j+eEVVpLfJmjYGThHIMEGfs5sR3T2V0S3GXgmnVmsROAllLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": 451, "action_noise": null, "start_time": 1680402271883381400, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANONIb6E7Rs+jr2xvB0JY77/ppi96kd4PQAAAAAAAAAAMxJQPSlYN7o5oAK8OxNzNhu0G7kTZNm1AAAAAAAAAAAzM/O8+E+zP4gSTb4NVke+B2Y3vSR3K74AAAAAAAAAABM/KL7YMBk/yDz3Peotob4zKsa8jLahvAAAAAAAAAAAZmZDPdjRpD990P0+0QIjvzkIArxQkXQ9AAAAAAAAAADA/rA98T7iPTaZML7wtFm+jHhEvTYJmrwAAAAAAAAAAOYNIL3PwzO8ZureutXtiDx9B5q9gzFiPQAAgD8AAIA/gKqGva5k9Ts+vZi9eutAvu7dWbwkiEi9AAAAAAAAAAAmW549PVpmuUAfvraAARWx2zLJOYWO4zUAAIA/AACAP2ZX/j3lHzQ+CjWVvR2QOb7Ztzg9RpGIvQAAAAAAAAAAZgnOvJ0ysD+qO/i+foe3vtc9JDy9Byq9AAAAAAAAAACzu8o92LnAPjl8OrtZUoW+l0j5PPnonb0AAAAAAAAAAAB8xbwMnao+QCOYvSo3c76OcaK8wBlgvQAAAAAAAAAAJvufvSTXRD82SKM9NjqovqGX1zxmhMY9AAAAAAAAAAAzPti8HNE9PTjiWr0HHx6+NvuTu2wCQ70AAAAAAAAAAJpJkz52yRk/4C78PCAllL5XVh8+fUDavQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIK4VALrHxcUCUhpRSlIwBbJRNyAGMAXSUR0CWrV+vQnhLdX2UKGgGaAloD0MIG76FdaPbcUCUhpRSlGgVTRkBaBZHQJatbNdJJ5F1fZQoaAZoCWgPQwg5Jov7j9FwQJSGlFKUaBVL92gWR0CWricjJMg2dX2UKGgGaAloD0MI39416Ev+cUCUhpRSlGgVTTcBaBZHQJauR2KVII51fZQoaAZoCWgPQwi/fLJiOMBtQJSGlFKUaBVNRwFoFkdAlq7T15B1LnV9lChoBmgJaA9DCDvFqkGY3VxAlIaUUpRoFU3oA2gWR0CWr3VGTcIrdX2UKGgGaAloD0MIz2VqEjzwckCUhpRSlGgVTVcBaBZHQJbIUWBSUC91fZQoaAZoCWgPQwhYchWLn5lyQJSGlFKUaBVNfQFoFkdAlspxBZ6lcnV9lChoBmgJaA9DCH2wjA3dF25AlIaUUpRoFU0ZAWgWR0CWy3l9jPOZdX2UKGgGaAloD0MIXaj8a7mbckCUhpRSlGgVTT0BaBZHQJbMsMoc7yR1fZQoaAZoCWgPQwgwuVFkrcBtQJSGlFKUaBVNHAFoFkdAlszI5PuXu3V9lChoBmgJaA9DCBO7trdbfG9AlIaUUpRoFU0TAWgWR0CWzYwjt5UtdX2UKGgGaAloD0MIGjVfJR8RbkCUhpRSlGgVTScBaBZHQJbN9FPSDyx1fZQoaAZoCWgPQwiIK2fvjA9xQJSGlFKUaBVNEgFoFkdAls4lp0wJxHV9lChoBmgJaA9DCEZ6UbvfWW9AlIaUUpRoFU0+AWgWR0CWzlf4h2W6dX2UKGgGaAloD0MIsqAwKNMES0CUhpRSlGgVS/JoFkdAls7kWdmQKnV9lChoBmgJaA9DCHfc8LtpTnBAlIaUUpRoFU1YAWgWR0CWzySpiqhldX2UKGgGaAloD0MIRidLrTddcECUhpRSlGgVTQYCaBZHQJbPetT1kDp1fZQoaAZoCWgPQwjMtz6sN7BwQJSGlFKUaBVNUgFoFkdAltAIQvpQlHV9lChoBmgJaA9DCGu5MxOMCXBAlIaUUpRoFU1AAWgWR0CW0FyuIRAbdX2UKGgGaAloD0MIh272B8pCcECUhpRSlGgVTSgBaBZHQJbRAbYK6Wh1fZQoaAZoCWgPQwg25J8ZhLJwQJSGlFKUaBVNLgFoFkdAltGB99c8knV9lChoBmgJaA9DCLPNjekJL2tAlIaUUpRoFU0nAWgWR0CW0zsnAqNIdX2UKGgGaAloD0MI0lJ5O0JGbkCUhpRSlGgVTREBaBZHQJbUl4Pf8/F1fZQoaAZoCWgPQwheY5eontByQJSGlFKUaBVNNQFoFkdAltemxt52QnV9lChoBmgJaA9DCFJ+Uu3TFmxAlIaUUpRoFU0bAWgWR0CW17HaN+9bdX2UKGgGaAloD0MIgSVXsbgGcECUhpRSlGgVTVkBaBZHQJbYpf5ULlV1fZQoaAZoCWgPQwjFILBy6MRwQJSGlFKUaBVNVwFoFkdAltqrnX/YJ3V9lChoBmgJaA9DCN4ehID8XG9AlIaUUpRoFU0dAWgWR0CW2qyhi9ZidX2UKGgGaAloD0MIDFcHQJxdcUCUhpRSlGgVTTcBaBZHQJbaq8e0Xxh1fZQoaAZoCWgPQwhlOQmlr85wQJSGlFKUaBVNbQFoFkdAltq/kzXSSnV9lChoBmgJaA9DCBDn4QSmRHFAlIaUUpRoFU0UAWgWR0CW2xMVUModdX2UKGgGaAloD0MInvASnLoGcUCUhpRSlGgVTVIBaBZHQJbbNbOeJ551fZQoaAZoCWgPQwgvavergLVvQJSGlFKUaBVNnQFoFkdAlttz/VAiV3V9lChoBmgJaA9DCGoX00z3cm1AlIaUUpRoFU3FAWgWR0CW2/6zE74jdX2UKGgGaAloD0MIDLJl+braRUCUhpRSlGgVS8poFkdAluDdFnZkCnV9lChoBmgJaA9DCCjS/ZwCz3BAlIaUUpRoFU1rAWgWR0CW4RXAM2FWdX2UKGgGaAloD0MI5l31gHlLa0CUhpRSlGgVTaECaBZHQJbhJNO/L1V1fZQoaAZoCWgPQwgkRzoDo3BsQJSGlFKUaBVNHwFoFkdAluFO76Hj63V9lChoBmgJaA9DCAw/OJ+6MG9AlIaUUpRoFU0OAWgWR0CW40TjNpuddX2UKGgGaAloD0MILudSXJVAckCUhpRSlGgVTVoBaBZHQJbjbLkjopx1fZQoaAZoCWgPQwgjg9xFWDZyQJSGlFKUaBVNQwFoFkdAluNtZmqYJHV9lChoBmgJaA9DCJKU9DD0jnBAlIaUUpRoFU0oAWgWR0CW5DSFoL5RdX2UKGgGaAloD0MIi415HXGNcECUhpRSlGgVTScBaBZHQJbkPEpAlfJ1fZQoaAZoCWgPQwgiGt1BbPluQJSGlFKUaBVNEwFoFkdAluRV2NedCnV9lChoBmgJaA9DCJ4LI72oSW1AlIaUUpRoFU1AAWgWR0CW5UQJXyRTdX2UKGgGaAloD0MIFMyYgjVLYUCUhpRSlGgVTegDaBZHQJbmhCAtnPF1fZQoaAZoCWgPQwiXjjnP2DBvQJSGlFKUaBVNcAFoFkdAlubSro4dZXV9lChoBmgJaA9DCNbgfVXuT3JAlIaUUpRoFU1iAWgWR0CW501qFh5PdX2UKGgGaAloD0MIOlrVko6ubkCUhpRSlGgVTRMBaBZHQJcCx2GIsRR1fZQoaAZoCWgPQwi3YRQED7ZsQJSGlFKUaBVNIQFoFkdAlwMIjOcDsHV9lChoBmgJaA9DCP5F0JhJWkxAlIaUUpRoFUvgaBZHQJcDIZ2pyZN1fZQoaAZoCWgPQwiU+rK0U1MlwJSGlFKUaBVL1GgWR0CXA50K7ZnMdX2UKGgGaAloD0MIM/lmm5usckCUhpRSlGgVTS0BaBZHQJcDotVaOgh1fZQoaAZoCWgPQwhwsaIG0zhYQJSGlFKUaBVN6ANoFkdAlwWpNO/L1XV9lChoBmgJaA9DCOnX1k9/mnFAlIaUUpRoFU1uAWgWR0CXBgvK2a2GdX2UKGgGaAloD0MIWFaalAL0bECUhpRSlGgVTUUBaBZHQJcGrsv7FbV1fZQoaAZoCWgPQwj4/DBCuCZzQJSGlFKUaBVNNAFoFkdAlwbk7W/ag3V9lChoBmgJaA9DCDUlWYcjOG9AlIaUUpRoFU1dAWgWR0CXB3XvYvnKdX2UKGgGaAloD0MIOWQD6eLub0CUhpRSlGgVTRkBaBZHQJcIdl18stl1fZQoaAZoCWgPQwjy7PKtj6pxQJSGlFKUaBVNIAFoFkdAlwj/kili0HV9lChoBmgJaA9DCGIRww7jXW1AlIaUUpRoFU12AWgWR0CXCRGnn+yadX2UKGgGaAloD0MI+Ipuveb2cUCUhpRSlGgVTSQBaBZHQJcJlpsXSBt1fZQoaAZoCWgPQwjAP6VKFERxQJSGlFKUaBVNewFoFkdAlwoZo4+8oXV9lChoBmgJaA9DCEJ79fEQznBAlIaUUpRoFU0CAWgWR0CXC0/hl18tdX2UKGgGaAloD0MIsp5afXVHVkCUhpRSlGgVTegDaBZHQJcM4f4h2W91fZQoaAZoCWgPQwjYZfhP93RxQJSGlFKUaBVNPwFoFkdAlwzyih37lHV9lChoBmgJaA9DCNFZZhFKInNAlIaUUpRoFU1EAWgWR0CXDU8IiTt+dX2UKGgGaAloD0MI6lkQyvuscUCUhpRSlGgVTVABaBZHQJcOQXEZR9B1fZQoaAZoCWgPQwjc9j3qr/NwQJSGlFKUaBVNHwFoFkdAlw6cE7nxKHV9lChoBmgJaA9DCEhRZ+5h1XBAlIaUUpRoFU1gAWgWR0CXDrq2BreqdX2UKGgGaAloD0MIU+dR8X+Ob0CUhpRSlGgVTS8BaBZHQJcPYYMvysl1fZQoaAZoCWgPQwg+WwcHe4JuQJSGlFKUaBVNHgFoFkdAlw9yobXHznV9lChoBmgJaA9DCBB39Sqyt3FAlIaUUpRoFU0vAWgWR0CXEBoL5RCQdX2UKGgGaAloD0MIP8iyYCI/ckCUhpRSlGgVTTUBaBZHQJcQzqTr3TN1fZQoaAZoCWgPQwi4sdmR6rJuQJSGlFKUaBVNLQFoFkdAlxIWYOUdJnV9lChoBmgJaA9DCLGIYYfxC3JAlIaUUpRoFU1MAWgWR0CXEnEC/47BdX2UKGgGaAloD0MI7Sx6p4K4cUCUhpRSlGgVTT8BaBZHQJcSkSOBDoh1fZQoaAZoCWgPQwgX8Z2Y9XdyQJSGlFKUaBVNNAFoFkdAlxNdTDO1OXV9lChoBmgJaA9DCB1yM9xAF3FAlIaUUpRoFU1TAWgWR0CXE72x6fJ4dX2UKGgGaAloD0MIwvaTMT50SkCUhpRSlGgVS/JoFkdAlxRv642CNHV9lChoBmgJaA9DCAPqzaj5rm9AlIaUUpRoFU0zAWgWR0CXFHnQID5kdX2UKGgGaAloD0MImGiQgqfXbECUhpRSlGgVTUIBaBZHQJcWbUCq6vt1fZQoaAZoCWgPQwjCiejX1pxvQJSGlFKUaBVNWgFoFkdAlxdINmUW23V9lChoBmgJaA9DCDRmEvWCrW1AlIaUUpRoFU03AWgWR0CXF4QoTfzjdX2UKGgGaAloD0MIieqtga0AckCUhpRSlGgVTTMBaBZHQJcYp5a/yoZ1fZQoaAZoCWgPQwitw9FVukByQJSGlFKUaBVNSwFoFkdAlxlnKB/ZunV9lChoBmgJaA9DCCTusfShEm9AlIaUUpRoFU0nAWgWR0CXGdmD15B1dX2UKGgGaAloD0MIzTy5pgChcUCUhpRSlGgVTVcBaBZHQJcatCNS6191fZQoaAZoCWgPQwhjf9k9+RduQJSGlFKUaBVNlwFoFkdAlxseskpqh3V9lChoBmgJaA9DCH9Ma9PY0HJAlIaUUpRoFU0HAWgWR0CXG7eHi3ocdX2UKGgGaAloD0MICW05l+KGbUCUhpRSlGgVTUQBaBZHQJccUc81XNl1fZQoaAZoCWgPQwgtza0Q1rltQJSGlFKUaBVNQgFoFkdAlxyhiLEUCnV9lChoBmgJaA9DCA9EFmmi4HFAlIaUUpRoFU1EAWgWR0CXHM2x6fJ4dX2UKGgGaAloD0MIV1pG6r2mbUCUhpRSlGgVTRIBaBZHQJcdRXPqs2h1fZQoaAZoCWgPQwgAdQMFHl1wQJSGlFKUaBVNQAFoFkdAlx6d03fhuXV9lChoBmgJaA9DCIXOa+wScGxAlIaUUpRoFU1kAWgWR0CXHt/qPfbcdX2UKGgGaAloD0MISMX/HdHwcUCUhpRSlGgVTTMBaBZHQJcg4dfb9Ih1fZQoaAZoCWgPQwhyjGSPUKZxQJSGlFKUaBVNWAJoFkdAlyEA4jrzG3V9lChoBmgJaA9DCOzBpPg4b3BAlIaUUpRoFU00AWgWR0CXIRx8D0UXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunar_ppo_baseline_v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a892ccab60f72fd4cc94fbc5006ae79345d219516c4671da69c672dda45fa929
3
+ size 151084
lunar_ppo_baseline_v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_ppo_baseline_v0/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8fcbf6eee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8fcbf6ef70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8fcbf71040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8fcbf710d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8fcbf71160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8fcbf711f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8fcbf71280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8fcbf71310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8fcbf713a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8fcbf71430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8fcbf714c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8fcbf71550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8fcbf706c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOWuxRnaus7LlTz7yGGsgvLtgbAyrhAI06tbNnYW35F+Kf6tMVYEpcIGHFudcxeBc15xx0Ud+oQ0MxNnJ1QHfkJfjBuUvTp+7QUscxHqLLTzH6m4sTDKE9xLCZpRc17pzbcRjT4D/VSv1gieRqwtUTcsBmo9yd5McNzjUu7fIBlfyqXVQ1BUm29ofaVK1KyFROWleV7uj/d4VdxwfmcvjVFAPv57cncn6JT3xMilyYBgeOZeqvdhmjoh4fFRC6UighS3sh/Fi+aVy7sS2Z4rholYs47wI8dbk0h6o0FWXiaRCLhqBM62aJ8/AxPcIsnREvLr1a9t+oCMWmAWUL0dP0E7FpgjknaQQLdCtQU8chFCGTVco2J9dVcGTNWPP2sOUECs5eRqpwoDWVx0bpOA+RSyyDjCMoslWlsPt0rraV/zYwjh7R6ucGOoNnzHcvfASslHHstdpuz+iJbJBCIxubrSJ/zLkFRsrgd6sYqkY4n+N8DsDgYRL6Blr1yuPXgrBDucWj0/x77bHim3xJv/k0/PX6koXeLz4iMpzuDm3Eu5xQyKhfdMOyzLrgc483wr7YLl+oTTSTFeUj1P9GUJzowdlIwqXd7TrJ6RbEHK8tv0ENNRTKVLwS3GPIugbO01EIbhqQKSAn51KSsrg7J//RVwy/qBdiOoD78YJMh2sVX+g8iBDdO8QRUjXuixJNpfQxOOn6zXpUP/qzN9CFlsxBBQ8kV0bRLoqpy6oJTjaSELx3OL4OG51y4d55UIvFqk4HslO/Gl6b6MKOpIRMTUTLxbkyD5ViTcDAvHGChbOmxXqoIN41yuQ9+deoHmM4eMDZ6q3rQWwYkheumjKjVzID4ulwIA8cRN7bDZ9G9jIuhPHkiUQ/9MBYUapeYAw7Fgt8z19zXUxeTpacc1QuEdaZ1fCqH7KtZHvlYb4NnI19OnduIGV9wx9XnX7D9eIPqWSNArhk5KN6vH+eCWhf3qQghua9wsDGwdt5ckt7wn07MOz7+9kiu8KzB3RGV3yjw1ZTXKZBztmJYUxtLN9vhiKxXhP8xvW1PHYZwO0V/qRrv7cFD9U1tQcMoMdOUQE/nYxFR0yUvdxu30+q+DV7Q8FRqKYoLp9PGARETzkgPrIvp49bzxOOX2qUxI/gqDufLOdz8kj1JSjMcPY6+HNdntF+f/HvvO5yzGB0BnuHek+fUPHD5Toq4XjSNq1Pf31+9laU1M1HhR19XkrUXA8hoNX8z+1hz8Qe7K6E/rqZbxDPgbAafFt1YMqfjfPhtWeD4gAH7NjlE8cjTfXzoftwzWNcNDms3afVHHUk0dai/72GR8dK2n35hsTb4pzfjycdhhr4Zl4EwsvUSO+TBZjdEojp+0jcNKsMimkuq2Ru9ZWgfWEaq6tpDPz7hS4hZjTZ+ILJ2Xx5yegVZkeiv91i9I3k7tj8icwT7ijroXVIKEU0AWiKbL1NHCRpDFpyi3frQcndg6erOx8s5+APJSSCY37vsHQ6ujYo0K6sESZiNfiQpSFn9a+Gk6l0uuDRhC1e+dGa+EYL0ufvess24yXyGWZJgvG1oOkelJcXiEIgJdRpg12RJGKK//2daDSYn+50QyhCI1Le+r8Y3AezJLCzfyNBkVbeDMiUTs28ijARkxKyJyV4jbzh8OWkkHHeoiA2IZBxhplntAe23Dmaj2JLmkxdH8xjErAfIL8TWjoMPBbd34OSlne3Cffu7QZuq4Qb7R92rMJ7LUg4imnwZT3uVF+wjWTbxPreuBuM2XPcxlojAlCCz7TOsrOY5yt2puJs+ewfMErC0iO95klHGskD2jjrimwIiSBUCHuEVkEFGlVtcY/KnKhm1JtG3gdpvOTnCOFfBAKLBO5XBkWnHZST29PXlhLvugfwTRLUwII3TsPz9gqhumSi+dD3YPKENiS7HchApm67G8G12X4s11RBjpIM/J1T8Gk4fvzP9taWdpAJQpjcMCQthf9vqSHcbw+pEjujdelbUqoFupWQROlXcxhyeeU+05aXEY+v0ioFMeRaXpr4PtsfVGicTYrtQvgouuws5OexekB9BoKP2OvMFvbjEaZlPFcKAJoKWuNf/R6p4GdU5CPjuXfSebFtSFITjS7B6/0ZJt58zXN13oTM8D/8pXlCs8vhI+hulqz2sv7CLnNKAMVgMEjrmH4HsSdumTl6fVXsGdb+zTgMwmh0bMG08ESOcHT61BvxShyWJjbbUkhIHq9bhT9u8b17gKuRs/T6Vq69t8uh27KJQAJpPKaJ2z75dPBt+cRPxyM2VRZR6EhqIGzEukqHFvzpLssbtHEmznCDWiE1H+g/I1zDk3I8uxuFQq9N9NOxlDQOKDBNOXZBq70QYSjLXiYJ3TqnLQYnxTpGE32XH9q6uRtbMsZB9cYtzyTjMobQU7obEPg9iVGCjI2azOLvm94Iws53+YuCgR5l2jHRU3csGBfVzyXYnVwyOUzVUkwOXTjM0xawMyEnroVeySc82T+o0qtNLKAPX4wv3er8GTLz99/fCYDqPjEV4pyh6okDFMR+77wIM3Qwc7oLNqgof5RR9KkikfJ3Jub9cbfQp8/DqdN6hvCrTf0uzfb05RAUFlf3qFz+AHEKe74Maa+Ozh2AK3mA2bG9q8D1KxJhY273RlkiIfoYUaZL65D3Sxs8Uv5T4kcSypfly/HCKDVNOUahQIvw9P3GxEV5ZwP77qJuM6MJkpMnIg4kGB0sPzk4CaQPLZHlI/RrjKsMtxtwHkYw04c7UZNDP4BWGqyP6GJrBw5ab2QmIW5qO+MMHriGzFO/8HdnEKUIfNqYtUpXiSRMiYO/UW0ilkIuhuzL8ZbbV4OvWqr7yrzrmH3ycFi0PSAShMaqHj8T6UpPUKiFYN5lxjq58Sa2nnq/u5GBnC2VwM92spfzgetttK/XUm8BUPcDqGiongN2Q7ZfJzoCzfIm4hkVvVghpBXUFv5Fi7hx38JroaUxYb2ebx7/tt3zZ52wlStuhw/7BlnwEfaRv4r680kfl/rvUkNMxeCd+x2saYea60/OBLSxkwW0LO3ZrDyKNYHOpJNO8YA3yQKSwoV+Jk+qNgKR5yqrr7YeDaXv9KTWs+MhVwrzPGzC8WGwktVpEb8iyCPHDlxaeKHitzFCQ5r8KFM2q/d/M8FaaCX0pDrR5C69a4vgxo93j/8V8bm/osYNC0I3mj2/L574nxSzx1rZQJ2LcC2imNYMdshuBpqihc1B6b/BIGnlBlfpGhTLFmtS9GL1ubhtFM/LppacGAH2K6y6QQzCRqoDWr1j+eEVVpLfJmjYGThHIMEGfs5sR3T2V0S3GXgmnVmsROAllLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000.0,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": 451,
50
+ "action_noise": null,
51
+ "start_time": 1680402271883381400,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANONIb6E7Rs+jr2xvB0JY77/ppi96kd4PQAAAAAAAAAAMxJQPSlYN7o5oAK8OxNzNhu0G7kTZNm1AAAAAAAAAAAzM/O8+E+zP4gSTb4NVke+B2Y3vSR3K74AAAAAAAAAABM/KL7YMBk/yDz3Peotob4zKsa8jLahvAAAAAAAAAAAZmZDPdjRpD990P0+0QIjvzkIArxQkXQ9AAAAAAAAAADA/rA98T7iPTaZML7wtFm+jHhEvTYJmrwAAAAAAAAAAOYNIL3PwzO8ZureutXtiDx9B5q9gzFiPQAAgD8AAIA/gKqGva5k9Ts+vZi9eutAvu7dWbwkiEi9AAAAAAAAAAAmW549PVpmuUAfvraAARWx2zLJOYWO4zUAAIA/AACAP2ZX/j3lHzQ+CjWVvR2QOb7Ztzg9RpGIvQAAAAAAAAAAZgnOvJ0ysD+qO/i+foe3vtc9JDy9Byq9AAAAAAAAAACzu8o92LnAPjl8OrtZUoW+l0j5PPnonb0AAAAAAAAAAAB8xbwMnao+QCOYvSo3c76OcaK8wBlgvQAAAAAAAAAAJvufvSTXRD82SKM9NjqovqGX1zxmhMY9AAAAAAAAAAAzPti8HNE9PTjiWr0HHx6+NvuTu2wCQ70AAAAAAAAAAJpJkz52yRk/4C78PCAllL5XVh8+fUDavQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIK4VALrHxcUCUhpRSlIwBbJRNyAGMAXSUR0CWrV+vQnhLdX2UKGgGaAloD0MIG76FdaPbcUCUhpRSlGgVTRkBaBZHQJatbNdJJ5F1fZQoaAZoCWgPQwg5Jov7j9FwQJSGlFKUaBVL92gWR0CWricjJMg2dX2UKGgGaAloD0MI39416Ev+cUCUhpRSlGgVTTcBaBZHQJauR2KVII51fZQoaAZoCWgPQwi/fLJiOMBtQJSGlFKUaBVNRwFoFkdAlq7T15B1LnV9lChoBmgJaA9DCDvFqkGY3VxAlIaUUpRoFU3oA2gWR0CWr3VGTcIrdX2UKGgGaAloD0MIz2VqEjzwckCUhpRSlGgVTVcBaBZHQJbIUWBSUC91fZQoaAZoCWgPQwhYchWLn5lyQJSGlFKUaBVNfQFoFkdAlspxBZ6lcnV9lChoBmgJaA9DCH2wjA3dF25AlIaUUpRoFU0ZAWgWR0CWy3l9jPOZdX2UKGgGaAloD0MIXaj8a7mbckCUhpRSlGgVTT0BaBZHQJbMsMoc7yR1fZQoaAZoCWgPQwgwuVFkrcBtQJSGlFKUaBVNHAFoFkdAlszI5PuXu3V9lChoBmgJaA9DCBO7trdbfG9AlIaUUpRoFU0TAWgWR0CWzYwjt5UtdX2UKGgGaAloD0MIGjVfJR8RbkCUhpRSlGgVTScBaBZHQJbN9FPSDyx1fZQoaAZoCWgPQwiIK2fvjA9xQJSGlFKUaBVNEgFoFkdAls4lp0wJxHV9lChoBmgJaA9DCEZ6UbvfWW9AlIaUUpRoFU0+AWgWR0CWzlf4h2W6dX2UKGgGaAloD0MIsqAwKNMES0CUhpRSlGgVS/JoFkdAls7kWdmQKnV9lChoBmgJaA9DCHfc8LtpTnBAlIaUUpRoFU1YAWgWR0CWzySpiqhldX2UKGgGaAloD0MIRidLrTddcECUhpRSlGgVTQYCaBZHQJbPetT1kDp1fZQoaAZoCWgPQwjMtz6sN7BwQJSGlFKUaBVNUgFoFkdAltAIQvpQlHV9lChoBmgJaA9DCGu5MxOMCXBAlIaUUpRoFU1AAWgWR0CW0FyuIRAbdX2UKGgGaAloD0MIh272B8pCcECUhpRSlGgVTSgBaBZHQJbRAbYK6Wh1fZQoaAZoCWgPQwg25J8ZhLJwQJSGlFKUaBVNLgFoFkdAltGB99c8knV9lChoBmgJaA9DCLPNjekJL2tAlIaUUpRoFU0nAWgWR0CW0zsnAqNIdX2UKGgGaAloD0MI0lJ5O0JGbkCUhpRSlGgVTREBaBZHQJbUl4Pf8/F1fZQoaAZoCWgPQwheY5eontByQJSGlFKUaBVNNQFoFkdAltemxt52QnV9lChoBmgJaA9DCFJ+Uu3TFmxAlIaUUpRoFU0bAWgWR0CW17HaN+9bdX2UKGgGaAloD0MIgSVXsbgGcECUhpRSlGgVTVkBaBZHQJbYpf5ULlV1fZQoaAZoCWgPQwjFILBy6MRwQJSGlFKUaBVNVwFoFkdAltqrnX/YJ3V9lChoBmgJaA9DCN4ehID8XG9AlIaUUpRoFU0dAWgWR0CW2qyhi9ZidX2UKGgGaAloD0MIDFcHQJxdcUCUhpRSlGgVTTcBaBZHQJbaq8e0Xxh1fZQoaAZoCWgPQwhlOQmlr85wQJSGlFKUaBVNbQFoFkdAltq/kzXSSnV9lChoBmgJaA9DCBDn4QSmRHFAlIaUUpRoFU0UAWgWR0CW2xMVUModdX2UKGgGaAloD0MInvASnLoGcUCUhpRSlGgVTVIBaBZHQJbbNbOeJ551fZQoaAZoCWgPQwgvavergLVvQJSGlFKUaBVNnQFoFkdAlttz/VAiV3V9lChoBmgJaA9DCGoX00z3cm1AlIaUUpRoFU3FAWgWR0CW2/6zE74jdX2UKGgGaAloD0MIDLJl+braRUCUhpRSlGgVS8poFkdAluDdFnZkCnV9lChoBmgJaA9DCCjS/ZwCz3BAlIaUUpRoFU1rAWgWR0CW4RXAM2FWdX2UKGgGaAloD0MI5l31gHlLa0CUhpRSlGgVTaECaBZHQJbhJNO/L1V1fZQoaAZoCWgPQwgkRzoDo3BsQJSGlFKUaBVNHwFoFkdAluFO76Hj63V9lChoBmgJaA9DCAw/OJ+6MG9AlIaUUpRoFU0OAWgWR0CW40TjNpuddX2UKGgGaAloD0MILudSXJVAckCUhpRSlGgVTVoBaBZHQJbjbLkjopx1fZQoaAZoCWgPQwgjg9xFWDZyQJSGlFKUaBVNQwFoFkdAluNtZmqYJHV9lChoBmgJaA9DCJKU9DD0jnBAlIaUUpRoFU0oAWgWR0CW5DSFoL5RdX2UKGgGaAloD0MIi415HXGNcECUhpRSlGgVTScBaBZHQJbkPEpAlfJ1fZQoaAZoCWgPQwgiGt1BbPluQJSGlFKUaBVNEwFoFkdAluRV2NedCnV9lChoBmgJaA9DCJ4LI72oSW1AlIaUUpRoFU1AAWgWR0CW5UQJXyRTdX2UKGgGaAloD0MIFMyYgjVLYUCUhpRSlGgVTegDaBZHQJbmhCAtnPF1fZQoaAZoCWgPQwiXjjnP2DBvQJSGlFKUaBVNcAFoFkdAlubSro4dZXV9lChoBmgJaA9DCNbgfVXuT3JAlIaUUpRoFU1iAWgWR0CW501qFh5PdX2UKGgGaAloD0MIOlrVko6ubkCUhpRSlGgVTRMBaBZHQJcCx2GIsRR1fZQoaAZoCWgPQwi3YRQED7ZsQJSGlFKUaBVNIQFoFkdAlwMIjOcDsHV9lChoBmgJaA9DCP5F0JhJWkxAlIaUUpRoFUvgaBZHQJcDIZ2pyZN1fZQoaAZoCWgPQwiU+rK0U1MlwJSGlFKUaBVL1GgWR0CXA50K7ZnMdX2UKGgGaAloD0MIM/lmm5usckCUhpRSlGgVTS0BaBZHQJcDotVaOgh1fZQoaAZoCWgPQwhwsaIG0zhYQJSGlFKUaBVN6ANoFkdAlwWpNO/L1XV9lChoBmgJaA9DCOnX1k9/mnFAlIaUUpRoFU1uAWgWR0CXBgvK2a2GdX2UKGgGaAloD0MIWFaalAL0bECUhpRSlGgVTUUBaBZHQJcGrsv7FbV1fZQoaAZoCWgPQwj4/DBCuCZzQJSGlFKUaBVNNAFoFkdAlwbk7W/ag3V9lChoBmgJaA9DCDUlWYcjOG9AlIaUUpRoFU1dAWgWR0CXB3XvYvnKdX2UKGgGaAloD0MIOWQD6eLub0CUhpRSlGgVTRkBaBZHQJcIdl18stl1fZQoaAZoCWgPQwjy7PKtj6pxQJSGlFKUaBVNIAFoFkdAlwj/kili0HV9lChoBmgJaA9DCGIRww7jXW1AlIaUUpRoFU12AWgWR0CXCRGnn+yadX2UKGgGaAloD0MI+Ipuveb2cUCUhpRSlGgVTSQBaBZHQJcJlpsXSBt1fZQoaAZoCWgPQwjAP6VKFERxQJSGlFKUaBVNewFoFkdAlwoZo4+8oXV9lChoBmgJaA9DCEJ79fEQznBAlIaUUpRoFU0CAWgWR0CXC0/hl18tdX2UKGgGaAloD0MIsp5afXVHVkCUhpRSlGgVTegDaBZHQJcM4f4h2W91fZQoaAZoCWgPQwjYZfhP93RxQJSGlFKUaBVNPwFoFkdAlwzyih37lHV9lChoBmgJaA9DCNFZZhFKInNAlIaUUpRoFU1EAWgWR0CXDU8IiTt+dX2UKGgGaAloD0MI6lkQyvuscUCUhpRSlGgVTVABaBZHQJcOQXEZR9B1fZQoaAZoCWgPQwjc9j3qr/NwQJSGlFKUaBVNHwFoFkdAlw6cE7nxKHV9lChoBmgJaA9DCEhRZ+5h1XBAlIaUUpRoFU1gAWgWR0CXDrq2BreqdX2UKGgGaAloD0MIU+dR8X+Ob0CUhpRSlGgVTS8BaBZHQJcPYYMvysl1fZQoaAZoCWgPQwg+WwcHe4JuQJSGlFKUaBVNHgFoFkdAlw9yobXHznV9lChoBmgJaA9DCBB39Sqyt3FAlIaUUpRoFU0vAWgWR0CXEBoL5RCQdX2UKGgGaAloD0MIP8iyYCI/ckCUhpRSlGgVTTUBaBZHQJcQzqTr3TN1fZQoaAZoCWgPQwi4sdmR6rJuQJSGlFKUaBVNLQFoFkdAlxIWYOUdJnV9lChoBmgJaA9DCLGIYYfxC3JAlIaUUpRoFU1MAWgWR0CXEnEC/47BdX2UKGgGaAloD0MI7Sx6p4K4cUCUhpRSlGgVTT8BaBZHQJcSkSOBDoh1fZQoaAZoCWgPQwgX8Z2Y9XdyQJSGlFKUaBVNNAFoFkdAlxNdTDO1OXV9lChoBmgJaA9DCB1yM9xAF3FAlIaUUpRoFU1TAWgWR0CXE72x6fJ4dX2UKGgGaAloD0MIwvaTMT50SkCUhpRSlGgVS/JoFkdAlxRv642CNHV9lChoBmgJaA9DCAPqzaj5rm9AlIaUUpRoFU0zAWgWR0CXFHnQID5kdX2UKGgGaAloD0MImGiQgqfXbECUhpRSlGgVTUIBaBZHQJcWbUCq6vt1fZQoaAZoCWgPQwjCiejX1pxvQJSGlFKUaBVNWgFoFkdAlxdINmUW23V9lChoBmgJaA9DCDRmEvWCrW1AlIaUUpRoFU03AWgWR0CXF4QoTfzjdX2UKGgGaAloD0MIieqtga0AckCUhpRSlGgVTTMBaBZHQJcYp5a/yoZ1fZQoaAZoCWgPQwitw9FVukByQJSGlFKUaBVNSwFoFkdAlxlnKB/ZunV9lChoBmgJaA9DCCTusfShEm9AlIaUUpRoFU0nAWgWR0CXGdmD15B1dX2UKGgGaAloD0MIzTy5pgChcUCUhpRSlGgVTVcBaBZHQJcatCNS6191fZQoaAZoCWgPQwhjf9k9+RduQJSGlFKUaBVNlwFoFkdAlxseskpqh3V9lChoBmgJaA9DCH9Ma9PY0HJAlIaUUpRoFU0HAWgWR0CXG7eHi3ocdX2UKGgGaAloD0MICW05l+KGbUCUhpRSlGgVTUQBaBZHQJccUc81XNl1fZQoaAZoCWgPQwgtza0Q1rltQJSGlFKUaBVNQgFoFkdAlxyhiLEUCnV9lChoBmgJaA9DCA9EFmmi4HFAlIaUUpRoFU1EAWgWR0CXHM2x6fJ4dX2UKGgGaAloD0MIV1pG6r2mbUCUhpRSlGgVTRIBaBZHQJcdRXPqs2h1fZQoaAZoCWgPQwgAdQMFHl1wQJSGlFKUaBVNQAFoFkdAlx6d03fhuXV9lChoBmgJaA9DCIXOa+wScGxAlIaUUpRoFU1kAWgWR0CXHt/qPfbcdX2UKGgGaAloD0MISMX/HdHwcUCUhpRSlGgVTTMBaBZHQJcg4dfb9Ih1fZQoaAZoCWgPQwhyjGSPUKZxQJSGlFKUaBVNWAJoFkdAlyEA4jrzG3V9lChoBmgJaA9DCOzBpPg4b3BAlIaUUpRoFU00AWgWR0CXIRx8D0UXdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_ppo_baseline_v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00ca201162673686b034ed93f9f8d8ebe88d44e5a5faabc532a2e265518a4d73
3
+ size 87929
lunar_ppo_baseline_v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdf3eca58fcc0ed178c47bf87de535bc2982e7059f3afa425bd178c51f6cacc9
3
+ size 43393
lunar_ppo_baseline_v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_ppo_baseline_v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (224 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.08453082692574, "std_reward": 15.463545080161913, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T02:51:54.269096"}