Commit
·
bedc493
1
Parent(s):
b313bf8
Initial handler file
Browse files- handler.py +120 -0
handler.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import transformers
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
9 |
+
"",
|
10 |
+
trust_remote_code=True
|
11 |
+
)
|
12 |
+
if tokenizer.pad_token_id is None:
|
13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
14 |
+
tokenizer.padding_side = 'left'
|
15 |
+
|
16 |
+
stop_token_ids = tokenizer.convert_tokens_to_ids(["<|endoftext|>"])
|
17 |
+
|
18 |
+
|
19 |
+
# Define a custom stopping criteria
|
20 |
+
class StopOnTokens(StoppingCriteria):
|
21 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
22 |
+
for stop_id in stop_token_ids:
|
23 |
+
if input_ids[0][-1] == stop_id:
|
24 |
+
return True
|
25 |
+
return False
|
26 |
+
|
27 |
+
|
28 |
+
class EndpointHandler():
|
29 |
+
def __init__(self, path=""):
|
30 |
+
|
31 |
+
self.torch_dtype = torch.bfloat16
|
32 |
+
# self.torch_dtype = torch.float32
|
33 |
+
|
34 |
+
self.tokenizer = tokenizer
|
35 |
+
|
36 |
+
self.config = transformers.AutoConfig.from_pretrained(
|
37 |
+
path,
|
38 |
+
trust_remote_code=True
|
39 |
+
)
|
40 |
+
|
41 |
+
# self.config.attn_config['attn_impl'] = 'triton'
|
42 |
+
# self.config.update({"max_seq_len": 4096})
|
43 |
+
|
44 |
+
self.model = transformers.AutoModelForCausalLM.from_pretrained(
|
45 |
+
path,
|
46 |
+
config=self.config,
|
47 |
+
torch_dtype=self.torch_dtype,
|
48 |
+
trust_remote_code=True
|
49 |
+
)
|
50 |
+
|
51 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
+
self.model.eval()
|
53 |
+
self.model.to(device=device, dtype=self.torch_dtype)
|
54 |
+
|
55 |
+
self.generate_kwargs = {
|
56 |
+
'max_new_tokens': 512,
|
57 |
+
'temperature': 0.0001,
|
58 |
+
'top_p': 1.0,
|
59 |
+
'top_k': 0,
|
60 |
+
'use_cache': True,
|
61 |
+
'do_sample': True,
|
62 |
+
'eos_token_id': self.tokenizer.eos_token_id,
|
63 |
+
'pad_token_id': self.tokenizer.pad_token_id,
|
64 |
+
"repetition_penalty": 1.1
|
65 |
+
}
|
66 |
+
|
67 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
68 |
+
"""
|
69 |
+
data args:
|
70 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
71 |
+
kwargs
|
72 |
+
Return:
|
73 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
74 |
+
"""
|
75 |
+
|
76 |
+
# streamer = TextIteratorStreamer(
|
77 |
+
# self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
78 |
+
# )
|
79 |
+
stop = StopOnTokens()
|
80 |
+
|
81 |
+
|
82 |
+
## Model Parameters
|
83 |
+
self.generate_kwargs['max_new_tokens'] = data['max_new_tokens'] if 'max_new_tokens' in data else self.generate_kwargs['max_new_tokens']
|
84 |
+
self.generate_kwargs['temperature'] = data['temperature'] if 'temperature' in data else self.generate_kwargs['temperature']
|
85 |
+
self.generate_kwargs['top_p'] = data['top_p'] if 'top_p' in data else self.generate_kwargs['top_p']
|
86 |
+
self.generate_kwargs['top_k'] = data['top_k'] if 'top_k' in data else self.generate_kwargs['top_k']
|
87 |
+
self.generate_kwargs['do_sample'] = data['do_sample'] if 'do_sample' in data else self.generate_kwargs['do_sample']
|
88 |
+
self.generate_kwargs['repetition_penalty'] = data['repetition_penalty'] if 'repetition_penalty' in data else self.generate_kwargs['repetition_penalty']
|
89 |
+
|
90 |
+
## Add the streamer and stopping criteria
|
91 |
+
# self.generate_kwargs['streamer'] = streamer
|
92 |
+
self.generate_kwargs['stopping_criteria'] = StoppingCriteriaList([stop])
|
93 |
+
|
94 |
+
## Prepare the inputs
|
95 |
+
inputs = data.pop("inputs",data)
|
96 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
|
97 |
+
input_ids = input_ids.to(self.model.device)
|
98 |
+
|
99 |
+
# encoded_inp = self.tokenizer(inputs, return_tensors='pt', padding=True)
|
100 |
+
# for key, value in encoded_inp.items():
|
101 |
+
# encoded_inp[key] = value.to('cuda:0')
|
102 |
+
|
103 |
+
## Invoke the model
|
104 |
+
# with torch.no_grad():
|
105 |
+
# gen_tokens = self.model.generate(
|
106 |
+
# input_ids=encoded_inp['input_ids'],
|
107 |
+
# attention_mask=encoded_inp['attention_mask'],
|
108 |
+
# **generate_kwargs,
|
109 |
+
# )
|
110 |
+
|
111 |
+
# ## Decode using tokenizer
|
112 |
+
# decoded_gen = self.tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)
|
113 |
+
|
114 |
+
with torch.no_grad():
|
115 |
+
output_ids = self.model.generate(input_ids, **self.generate_kwargs)
|
116 |
+
# Slice the output_ids tensor to get only new tokens
|
117 |
+
new_tokens = output_ids[0, len(input_ids[0]) :]
|
118 |
+
output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
119 |
+
|
120 |
+
return [{"gen_text":output_text, "input_text":inputs}]
|