Lancelot53
commited on
Commit
•
bef3705
1
Parent(s):
a062bdf
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: google/flan-t5-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -15,9 +13,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# flan-t5-base-xlsum
|
17 |
|
18 |
-
This model
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -49,114 +47,114 @@ The following hyperparameters were used during training:
|
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
|:-------------:|:-----:|:-----:|:---------------:|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
|
161 |
|
162 |
### Framework versions
|
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
|
|
13 |
|
14 |
# flan-t5-base-xlsum
|
15 |
|
16 |
+
This model was trained from scratch on the xlsum dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.4057
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
47 |
|
48 |
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 0.4372 | 0.05 | 100 | 0.3986 |
|
51 |
+
| 0.4257 | 0.09 | 200 | 0.3988 |
|
52 |
+
| 0.3988 | 0.14 | 300 | 0.4002 |
|
53 |
+
| 0.4148 | 0.18 | 400 | 0.4011 |
|
54 |
+
| 0.4156 | 0.23 | 500 | 0.4010 |
|
55 |
+
| 0.4102 | 0.28 | 600 | 0.4012 |
|
56 |
+
| 0.4198 | 0.32 | 700 | 0.4014 |
|
57 |
+
| 0.4085 | 0.37 | 800 | 0.4013 |
|
58 |
+
| 0.4199 | 0.42 | 900 | 0.4014 |
|
59 |
+
| 0.4143 | 0.46 | 1000 | 0.4008 |
|
60 |
+
| 0.4176 | 0.51 | 1100 | 0.4003 |
|
61 |
+
| 0.4188 | 0.55 | 1200 | 0.4007 |
|
62 |
+
| 0.4151 | 0.6 | 1300 | 0.4005 |
|
63 |
+
| 0.4221 | 0.65 | 1400 | 0.3990 |
|
64 |
+
| 0.416 | 0.69 | 1500 | 0.4004 |
|
65 |
+
| 0.4093 | 0.74 | 1600 | 0.3992 |
|
66 |
+
| 0.4111 | 0.79 | 1700 | 0.3995 |
|
67 |
+
| 0.4214 | 0.83 | 1800 | 0.3997 |
|
68 |
+
| 0.4061 | 0.88 | 1900 | 0.3998 |
|
69 |
+
| 0.4307 | 0.92 | 2000 | 0.3999 |
|
70 |
+
| 0.4301 | 0.97 | 2100 | 0.3994 |
|
71 |
+
| 0.4049 | 1.02 | 2200 | 0.4006 |
|
72 |
+
| 0.386 | 1.06 | 2300 | 0.4008 |
|
73 |
+
| 0.3948 | 1.11 | 2400 | 0.4015 |
|
74 |
+
| 0.3909 | 1.16 | 2500 | 0.4013 |
|
75 |
+
| 0.3852 | 1.2 | 2600 | 0.4005 |
|
76 |
+
| 0.3927 | 1.25 | 2700 | 0.4011 |
|
77 |
+
| 0.3973 | 1.29 | 2800 | 0.4021 |
|
78 |
+
| 0.3895 | 1.34 | 2900 | 0.4014 |
|
79 |
+
| 0.386 | 1.39 | 3000 | 0.4006 |
|
80 |
+
| 0.4033 | 1.43 | 3100 | 0.4013 |
|
81 |
+
| 0.3931 | 1.48 | 3200 | 0.4009 |
|
82 |
+
| 0.4035 | 1.53 | 3300 | 0.4003 |
|
83 |
+
| 0.4073 | 1.57 | 3400 | 0.4003 |
|
84 |
+
| 0.3914 | 1.62 | 3500 | 0.4001 |
|
85 |
+
| 0.3875 | 1.66 | 3600 | 0.4007 |
|
86 |
+
| 0.4051 | 1.71 | 3700 | 0.4007 |
|
87 |
+
| 0.3878 | 1.76 | 3800 | 0.4016 |
|
88 |
+
| 0.3891 | 1.8 | 3900 | 0.4005 |
|
89 |
+
| 0.3916 | 1.85 | 4000 | 0.4014 |
|
90 |
+
| 0.4147 | 1.9 | 4100 | 0.3999 |
|
91 |
+
| 0.4037 | 1.94 | 4200 | 0.3994 |
|
92 |
+
| 0.4137 | 1.99 | 4300 | 0.3992 |
|
93 |
+
| 0.3811 | 2.03 | 4400 | 0.4028 |
|
94 |
+
| 0.3702 | 2.08 | 4500 | 0.4030 |
|
95 |
+
| 0.3607 | 2.13 | 4600 | 0.4031 |
|
96 |
+
| 0.3705 | 2.17 | 4700 | 0.4030 |
|
97 |
+
| 0.3771 | 2.22 | 4800 | 0.4030 |
|
98 |
+
| 0.3643 | 2.27 | 4900 | 0.4026 |
|
99 |
+
| 0.3933 | 2.31 | 5000 | 0.4030 |
|
100 |
+
| 0.3948 | 2.36 | 5100 | 0.4024 |
|
101 |
+
| 0.3772 | 2.4 | 5200 | 0.4023 |
|
102 |
+
| 0.3791 | 2.45 | 5300 | 0.4036 |
|
103 |
+
| 0.3705 | 2.5 | 5400 | 0.4036 |
|
104 |
+
| 0.3806 | 2.54 | 5500 | 0.4035 |
|
105 |
+
| 0.377 | 2.59 | 5600 | 0.4026 |
|
106 |
+
| 0.3768 | 2.64 | 5700 | 0.4020 |
|
107 |
+
| 0.3765 | 2.68 | 5800 | 0.4031 |
|
108 |
+
| 0.3819 | 2.73 | 5900 | 0.4029 |
|
109 |
+
| 0.3715 | 2.77 | 6000 | 0.4022 |
|
110 |
+
| 0.3808 | 2.82 | 6100 | 0.4014 |
|
111 |
+
| 0.3905 | 2.87 | 6200 | 0.4016 |
|
112 |
+
| 0.3905 | 2.91 | 6300 | 0.4018 |
|
113 |
+
| 0.3798 | 2.96 | 6400 | 0.4007 |
|
114 |
+
| 0.3705 | 3.01 | 6500 | 0.4013 |
|
115 |
+
| 0.376 | 3.05 | 6600 | 0.4042 |
|
116 |
+
| 0.3599 | 3.1 | 6700 | 0.4048 |
|
117 |
+
| 0.3642 | 3.14 | 6800 | 0.4044 |
|
118 |
+
| 0.368 | 3.19 | 6900 | 0.4055 |
|
119 |
+
| 0.3709 | 3.24 | 7000 | 0.4051 |
|
120 |
+
| 0.3594 | 3.28 | 7100 | 0.4046 |
|
121 |
+
| 0.3723 | 3.33 | 7200 | 0.4045 |
|
122 |
+
| 0.3564 | 3.37 | 7300 | 0.4051 |
|
123 |
+
| 0.3695 | 3.42 | 7400 | 0.4040 |
|
124 |
+
| 0.354 | 3.47 | 7500 | 0.4038 |
|
125 |
+
| 0.3695 | 3.51 | 7600 | 0.4040 |
|
126 |
+
| 0.3769 | 3.56 | 7700 | 0.4040 |
|
127 |
+
| 0.361 | 3.61 | 7800 | 0.4044 |
|
128 |
+
| 0.3727 | 3.65 | 7900 | 0.4035 |
|
129 |
+
| 0.3591 | 3.7 | 8000 | 0.4042 |
|
130 |
+
| 0.3695 | 3.74 | 8100 | 0.4036 |
|
131 |
+
| 0.3747 | 3.79 | 8200 | 0.4043 |
|
132 |
+
| 0.3562 | 3.84 | 8300 | 0.4038 |
|
133 |
+
| 0.3512 | 3.88 | 8400 | 0.4037 |
|
134 |
+
| 0.3647 | 3.93 | 8500 | 0.4038 |
|
135 |
+
| 0.3657 | 3.98 | 8600 | 0.4041 |
|
136 |
+
| 0.3534 | 4.02 | 8700 | 0.4042 |
|
137 |
+
| 0.3517 | 4.07 | 8800 | 0.4052 |
|
138 |
+
| 0.3483 | 4.11 | 8900 | 0.4052 |
|
139 |
+
| 0.3514 | 4.16 | 9000 | 0.4056 |
|
140 |
+
| 0.3544 | 4.21 | 9100 | 0.4056 |
|
141 |
+
| 0.3599 | 4.25 | 9200 | 0.4054 |
|
142 |
+
| 0.3559 | 4.3 | 9300 | 0.4056 |
|
143 |
+
| 0.3738 | 4.35 | 9400 | 0.4056 |
|
144 |
+
| 0.3572 | 4.39 | 9500 | 0.4056 |
|
145 |
+
| 0.3444 | 4.44 | 9600 | 0.4056 |
|
146 |
+
| 0.3555 | 4.48 | 9700 | 0.4058 |
|
147 |
+
| 0.3583 | 4.53 | 9800 | 0.4059 |
|
148 |
+
| 0.3746 | 4.58 | 9900 | 0.4057 |
|
149 |
+
| 0.3496 | 4.62 | 10000 | 0.4059 |
|
150 |
+
| 0.3625 | 4.67 | 10100 | 0.4059 |
|
151 |
+
| 0.3529 | 4.72 | 10200 | 0.4058 |
|
152 |
+
| 0.3584 | 4.76 | 10300 | 0.4055 |
|
153 |
+
| 0.3503 | 4.81 | 10400 | 0.4056 |
|
154 |
+
| 0.3681 | 4.85 | 10500 | 0.4057 |
|
155 |
+
| 0.3542 | 4.9 | 10600 | 0.4057 |
|
156 |
+
| 0.3539 | 4.95 | 10700 | 0.4057 |
|
157 |
+
| 0.3591 | 4.99 | 10800 | 0.4057 |
|
158 |
|
159 |
|
160 |
### Framework versions
|