Lancelot53 commited on
Commit
bef3705
1 Parent(s): a062bdf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -112
README.md CHANGED
@@ -1,6 +1,4 @@
1
  ---
2
- license: apache-2.0
3
- base_model: google/flan-t5-base
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -15,9 +13,9 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # flan-t5-base-xlsum
17
 
18
- This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the xlsum dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.3989
21
 
22
  ## Model description
23
 
@@ -49,114 +47,114 @@ The following hyperparameters were used during training:
49
 
50
  | Training Loss | Epoch | Step | Validation Loss |
51
  |:-------------:|:-----:|:-----:|:---------------:|
52
- | 29.1967 | 0.05 | 100 | 4.4538 |
53
- | 2.3457 | 0.09 | 200 | 0.4789 |
54
- | 0.5064 | 0.14 | 300 | 0.4116 |
55
- | 0.4857 | 0.18 | 400 | 0.4077 |
56
- | 0.4749 | 0.23 | 500 | 0.4069 |
57
- | 0.4695 | 0.28 | 600 | 0.4059 |
58
- | 0.4754 | 0.32 | 700 | 0.4041 |
59
- | 0.4609 | 0.37 | 800 | 0.4044 |
60
- | 0.4703 | 0.42 | 900 | 0.4037 |
61
- | 0.4656 | 0.46 | 1000 | 0.4025 |
62
- | 0.464 | 0.51 | 1100 | 0.4020 |
63
- | 0.4679 | 0.55 | 1200 | 0.4026 |
64
- | 0.462 | 0.6 | 1300 | 0.4021 |
65
- | 0.4665 | 0.65 | 1400 | 0.4006 |
66
- | 0.4617 | 0.69 | 1500 | 0.4013 |
67
- | 0.4541 | 0.74 | 1600 | 0.4000 |
68
- | 0.4566 | 0.79 | 1700 | 0.3997 |
69
- | 0.4646 | 0.83 | 1800 | 0.3995 |
70
- | 0.4445 | 0.88 | 1900 | 0.3999 |
71
- | 0.4733 | 0.92 | 2000 | 0.3993 |
72
- | 0.4703 | 0.97 | 2100 | 0.3995 |
73
- | 0.4412 | 1.02 | 2200 | 0.3998 |
74
- | 0.4249 | 1.06 | 2300 | 0.4000 |
75
- | 0.436 | 1.11 | 2400 | 0.3995 |
76
- | 0.4333 | 1.16 | 2500 | 0.3989 |
77
- | 0.4249 | 1.2 | 2600 | 0.3984 |
78
- | 0.4312 | 1.25 | 2700 | 0.3988 |
79
- | 0.4376 | 1.29 | 2800 | 0.3992 |
80
- | 0.4276 | 1.34 | 2900 | 0.3990 |
81
- | 0.4258 | 1.39 | 3000 | 0.3983 |
82
- | 0.4411 | 1.43 | 3100 | 0.3986 |
83
- | 0.4352 | 1.48 | 3200 | 0.3989 |
84
- | 0.4429 | 1.53 | 3300 | 0.3974 |
85
- | 0.4466 | 1.57 | 3400 | 0.3980 |
86
- | 0.4311 | 1.62 | 3500 | 0.3977 |
87
- | 0.427 | 1.66 | 3600 | 0.3976 |
88
- | 0.4433 | 1.71 | 3700 | 0.3977 |
89
- | 0.4228 | 1.76 | 3800 | 0.3984 |
90
- | 0.4247 | 1.8 | 3900 | 0.3980 |
91
- | 0.4275 | 1.85 | 4000 | 0.3980 |
92
- | 0.4523 | 1.9 | 4100 | 0.3970 |
93
- | 0.4258 | 1.94 | 4200 | 0.3976 |
94
- | 0.4329 | 1.99 | 4300 | 0.3978 |
95
- | 0.4146 | 2.03 | 4400 | 0.3988 |
96
- | 0.4025 | 2.08 | 4500 | 0.3997 |
97
- | 0.3944 | 2.13 | 4600 | 0.3989 |
98
- | 0.4034 | 2.17 | 4700 | 0.3984 |
99
- | 0.4099 | 2.22 | 4800 | 0.3987 |
100
- | 0.3989 | 2.27 | 4900 | 0.3983 |
101
- | 0.4269 | 2.31 | 5000 | 0.3990 |
102
- | 0.4273 | 2.36 | 5100 | 0.3988 |
103
- | 0.4117 | 2.4 | 5200 | 0.3981 |
104
- | 0.4117 | 2.45 | 5300 | 0.3984 |
105
- | 0.4037 | 2.5 | 5400 | 0.3978 |
106
- | 0.4158 | 2.54 | 5500 | 0.3981 |
107
- | 0.4081 | 2.59 | 5600 | 0.3982 |
108
- | 0.4125 | 2.64 | 5700 | 0.3982 |
109
- | 0.4086 | 2.68 | 5800 | 0.3988 |
110
- | 0.4143 | 2.73 | 5900 | 0.3986 |
111
- | 0.4025 | 2.77 | 6000 | 0.3981 |
112
- | 0.4141 | 2.82 | 6100 | 0.3979 |
113
- | 0.4239 | 2.87 | 6200 | 0.3975 |
114
- | 0.4217 | 2.91 | 6300 | 0.3979 |
115
- | 0.4099 | 2.96 | 6400 | 0.3972 |
116
- | 0.4008 | 3.01 | 6500 | 0.3977 |
117
- | 0.4092 | 3.05 | 6600 | 0.3998 |
118
- | 0.3898 | 3.1 | 6700 | 0.4000 |
119
- | 0.3978 | 3.14 | 6800 | 0.3985 |
120
- | 0.4004 | 3.19 | 6900 | 0.3996 |
121
- | 0.3998 | 3.24 | 7000 | 0.3996 |
122
- | 0.3908 | 3.28 | 7100 | 0.3993 |
123
- | 0.4021 | 3.33 | 7200 | 0.3994 |
124
- | 0.3889 | 3.37 | 7300 | 0.3993 |
125
- | 0.4009 | 3.42 | 7400 | 0.3984 |
126
- | 0.3835 | 3.47 | 7500 | 0.3988 |
127
- | 0.3999 | 3.51 | 7600 | 0.3986 |
128
- | 0.409 | 3.56 | 7700 | 0.3985 |
129
- | 0.3927 | 3.61 | 7800 | 0.3984 |
130
- | 0.407 | 3.65 | 7900 | 0.3980 |
131
- | 0.389 | 3.7 | 8000 | 0.3989 |
132
- | 0.3976 | 3.74 | 8100 | 0.3981 |
133
- | 0.4075 | 3.79 | 8200 | 0.3982 |
134
- | 0.3897 | 3.84 | 8300 | 0.3981 |
135
- | 0.3805 | 3.88 | 8400 | 0.3983 |
136
- | 0.393 | 3.93 | 8500 | 0.3983 |
137
- | 0.398 | 3.98 | 8600 | 0.3980 |
138
- | 0.3832 | 4.02 | 8700 | 0.3985 |
139
- | 0.384 | 4.07 | 8800 | 0.3989 |
140
- | 0.3787 | 4.11 | 8900 | 0.3989 |
141
- | 0.3816 | 4.16 | 9000 | 0.3994 |
142
- | 0.3857 | 4.21 | 9100 | 0.3991 |
143
- | 0.3909 | 4.25 | 9200 | 0.3990 |
144
- | 0.3858 | 4.3 | 9300 | 0.3993 |
145
- | 0.4021 | 4.35 | 9400 | 0.3993 |
146
- | 0.3879 | 4.39 | 9500 | 0.3991 |
147
- | 0.3752 | 4.44 | 9600 | 0.3994 |
148
- | 0.3882 | 4.48 | 9700 | 0.3994 |
149
- | 0.3881 | 4.53 | 9800 | 0.3992 |
150
- | 0.4089 | 4.58 | 9900 | 0.3988 |
151
- | 0.3801 | 4.62 | 10000 | 0.3989 |
152
- | 0.3925 | 4.67 | 10100 | 0.3989 |
153
- | 0.3858 | 4.72 | 10200 | 0.3990 |
154
- | 0.3883 | 4.76 | 10300 | 0.3988 |
155
- | 0.3808 | 4.81 | 10400 | 0.3989 |
156
- | 0.4012 | 4.85 | 10500 | 0.3989 |
157
- | 0.384 | 4.9 | 10600 | 0.3989 |
158
- | 0.3828 | 4.95 | 10700 | 0.3989 |
159
- | 0.3899 | 4.99 | 10800 | 0.3989 |
160
 
161
 
162
  ### Framework versions
 
1
  ---
 
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
 
13
 
14
  # flan-t5-base-xlsum
15
 
16
+ This model was trained from scratch on the xlsum dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.4057
19
 
20
  ## Model description
21
 
 
47
 
48
  | Training Loss | Epoch | Step | Validation Loss |
49
  |:-------------:|:-----:|:-----:|:---------------:|
50
+ | 0.4372 | 0.05 | 100 | 0.3986 |
51
+ | 0.4257 | 0.09 | 200 | 0.3988 |
52
+ | 0.3988 | 0.14 | 300 | 0.4002 |
53
+ | 0.4148 | 0.18 | 400 | 0.4011 |
54
+ | 0.4156 | 0.23 | 500 | 0.4010 |
55
+ | 0.4102 | 0.28 | 600 | 0.4012 |
56
+ | 0.4198 | 0.32 | 700 | 0.4014 |
57
+ | 0.4085 | 0.37 | 800 | 0.4013 |
58
+ | 0.4199 | 0.42 | 900 | 0.4014 |
59
+ | 0.4143 | 0.46 | 1000 | 0.4008 |
60
+ | 0.4176 | 0.51 | 1100 | 0.4003 |
61
+ | 0.4188 | 0.55 | 1200 | 0.4007 |
62
+ | 0.4151 | 0.6 | 1300 | 0.4005 |
63
+ | 0.4221 | 0.65 | 1400 | 0.3990 |
64
+ | 0.416 | 0.69 | 1500 | 0.4004 |
65
+ | 0.4093 | 0.74 | 1600 | 0.3992 |
66
+ | 0.4111 | 0.79 | 1700 | 0.3995 |
67
+ | 0.4214 | 0.83 | 1800 | 0.3997 |
68
+ | 0.4061 | 0.88 | 1900 | 0.3998 |
69
+ | 0.4307 | 0.92 | 2000 | 0.3999 |
70
+ | 0.4301 | 0.97 | 2100 | 0.3994 |
71
+ | 0.4049 | 1.02 | 2200 | 0.4006 |
72
+ | 0.386 | 1.06 | 2300 | 0.4008 |
73
+ | 0.3948 | 1.11 | 2400 | 0.4015 |
74
+ | 0.3909 | 1.16 | 2500 | 0.4013 |
75
+ | 0.3852 | 1.2 | 2600 | 0.4005 |
76
+ | 0.3927 | 1.25 | 2700 | 0.4011 |
77
+ | 0.3973 | 1.29 | 2800 | 0.4021 |
78
+ | 0.3895 | 1.34 | 2900 | 0.4014 |
79
+ | 0.386 | 1.39 | 3000 | 0.4006 |
80
+ | 0.4033 | 1.43 | 3100 | 0.4013 |
81
+ | 0.3931 | 1.48 | 3200 | 0.4009 |
82
+ | 0.4035 | 1.53 | 3300 | 0.4003 |
83
+ | 0.4073 | 1.57 | 3400 | 0.4003 |
84
+ | 0.3914 | 1.62 | 3500 | 0.4001 |
85
+ | 0.3875 | 1.66 | 3600 | 0.4007 |
86
+ | 0.4051 | 1.71 | 3700 | 0.4007 |
87
+ | 0.3878 | 1.76 | 3800 | 0.4016 |
88
+ | 0.3891 | 1.8 | 3900 | 0.4005 |
89
+ | 0.3916 | 1.85 | 4000 | 0.4014 |
90
+ | 0.4147 | 1.9 | 4100 | 0.3999 |
91
+ | 0.4037 | 1.94 | 4200 | 0.3994 |
92
+ | 0.4137 | 1.99 | 4300 | 0.3992 |
93
+ | 0.3811 | 2.03 | 4400 | 0.4028 |
94
+ | 0.3702 | 2.08 | 4500 | 0.4030 |
95
+ | 0.3607 | 2.13 | 4600 | 0.4031 |
96
+ | 0.3705 | 2.17 | 4700 | 0.4030 |
97
+ | 0.3771 | 2.22 | 4800 | 0.4030 |
98
+ | 0.3643 | 2.27 | 4900 | 0.4026 |
99
+ | 0.3933 | 2.31 | 5000 | 0.4030 |
100
+ | 0.3948 | 2.36 | 5100 | 0.4024 |
101
+ | 0.3772 | 2.4 | 5200 | 0.4023 |
102
+ | 0.3791 | 2.45 | 5300 | 0.4036 |
103
+ | 0.3705 | 2.5 | 5400 | 0.4036 |
104
+ | 0.3806 | 2.54 | 5500 | 0.4035 |
105
+ | 0.377 | 2.59 | 5600 | 0.4026 |
106
+ | 0.3768 | 2.64 | 5700 | 0.4020 |
107
+ | 0.3765 | 2.68 | 5800 | 0.4031 |
108
+ | 0.3819 | 2.73 | 5900 | 0.4029 |
109
+ | 0.3715 | 2.77 | 6000 | 0.4022 |
110
+ | 0.3808 | 2.82 | 6100 | 0.4014 |
111
+ | 0.3905 | 2.87 | 6200 | 0.4016 |
112
+ | 0.3905 | 2.91 | 6300 | 0.4018 |
113
+ | 0.3798 | 2.96 | 6400 | 0.4007 |
114
+ | 0.3705 | 3.01 | 6500 | 0.4013 |
115
+ | 0.376 | 3.05 | 6600 | 0.4042 |
116
+ | 0.3599 | 3.1 | 6700 | 0.4048 |
117
+ | 0.3642 | 3.14 | 6800 | 0.4044 |
118
+ | 0.368 | 3.19 | 6900 | 0.4055 |
119
+ | 0.3709 | 3.24 | 7000 | 0.4051 |
120
+ | 0.3594 | 3.28 | 7100 | 0.4046 |
121
+ | 0.3723 | 3.33 | 7200 | 0.4045 |
122
+ | 0.3564 | 3.37 | 7300 | 0.4051 |
123
+ | 0.3695 | 3.42 | 7400 | 0.4040 |
124
+ | 0.354 | 3.47 | 7500 | 0.4038 |
125
+ | 0.3695 | 3.51 | 7600 | 0.4040 |
126
+ | 0.3769 | 3.56 | 7700 | 0.4040 |
127
+ | 0.361 | 3.61 | 7800 | 0.4044 |
128
+ | 0.3727 | 3.65 | 7900 | 0.4035 |
129
+ | 0.3591 | 3.7 | 8000 | 0.4042 |
130
+ | 0.3695 | 3.74 | 8100 | 0.4036 |
131
+ | 0.3747 | 3.79 | 8200 | 0.4043 |
132
+ | 0.3562 | 3.84 | 8300 | 0.4038 |
133
+ | 0.3512 | 3.88 | 8400 | 0.4037 |
134
+ | 0.3647 | 3.93 | 8500 | 0.4038 |
135
+ | 0.3657 | 3.98 | 8600 | 0.4041 |
136
+ | 0.3534 | 4.02 | 8700 | 0.4042 |
137
+ | 0.3517 | 4.07 | 8800 | 0.4052 |
138
+ | 0.3483 | 4.11 | 8900 | 0.4052 |
139
+ | 0.3514 | 4.16 | 9000 | 0.4056 |
140
+ | 0.3544 | 4.21 | 9100 | 0.4056 |
141
+ | 0.3599 | 4.25 | 9200 | 0.4054 |
142
+ | 0.3559 | 4.3 | 9300 | 0.4056 |
143
+ | 0.3738 | 4.35 | 9400 | 0.4056 |
144
+ | 0.3572 | 4.39 | 9500 | 0.4056 |
145
+ | 0.3444 | 4.44 | 9600 | 0.4056 |
146
+ | 0.3555 | 4.48 | 9700 | 0.4058 |
147
+ | 0.3583 | 4.53 | 9800 | 0.4059 |
148
+ | 0.3746 | 4.58 | 9900 | 0.4057 |
149
+ | 0.3496 | 4.62 | 10000 | 0.4059 |
150
+ | 0.3625 | 4.67 | 10100 | 0.4059 |
151
+ | 0.3529 | 4.72 | 10200 | 0.4058 |
152
+ | 0.3584 | 4.76 | 10300 | 0.4055 |
153
+ | 0.3503 | 4.81 | 10400 | 0.4056 |
154
+ | 0.3681 | 4.85 | 10500 | 0.4057 |
155
+ | 0.3542 | 4.9 | 10600 | 0.4057 |
156
+ | 0.3539 | 4.95 | 10700 | 0.4057 |
157
+ | 0.3591 | 4.99 | 10800 | 0.4057 |
158
 
159
 
160
  ### Framework versions