Model save
Browse files- README.md +38 -37
- config.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,57 +1,58 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
tags:
|
5 |
-
-
|
6 |
-
-
|
7 |
-
-
|
8 |
-
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
-
|
15 |
-
<!--- Describe your model here -->
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
pip install -U sentence-transformers
|
23 |
-
```
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
|
32 |
-
embeddings = model.encode(sentences)
|
33 |
-
print(embeddings)
|
34 |
-
```
|
35 |
|
|
|
36 |
|
|
|
37 |
|
38 |
-
##
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
44 |
|
45 |
|
46 |
-
## Full Model Architecture
|
47 |
-
```
|
48 |
-
SentenceTransformer(
|
49 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
50 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
51 |
-
(2): Normalize()
|
52 |
-
)
|
53 |
-
```
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: BAAI/bge-large-en-v1.5
|
4 |
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: PMC_bge
|
8 |
+
results: []
|
9 |
---
|
10 |
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
|
|
|
13 |
|
14 |
+
# PMC_bge
|
15 |
|
16 |
+
This model is a fine-tuned version of [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on an unknown dataset.
|
17 |
|
18 |
+
## Model description
|
|
|
|
|
19 |
|
20 |
+
More information needed
|
21 |
|
22 |
+
## Intended uses & limitations
|
|
|
|
|
23 |
|
24 |
+
More information needed
|
|
|
|
|
|
|
25 |
|
26 |
+
## Training and evaluation data
|
27 |
|
28 |
+
More information needed
|
29 |
|
30 |
+
## Training procedure
|
31 |
|
32 |
+
### Training hyperparameters
|
33 |
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 1e-05
|
36 |
+
- train_batch_size: 8
|
37 |
+
- eval_batch_size: 8
|
38 |
+
- seed: 42
|
39 |
+
- distributed_type: multi-GPU
|
40 |
+
- num_devices: 8
|
41 |
+
- gradient_accumulation_steps: 8
|
42 |
+
- total_train_batch_size: 512
|
43 |
+
- total_eval_batch_size: 64
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- num_epochs: 20.0
|
48 |
|
49 |
+
### Training results
|
50 |
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
### Framework versions
|
54 |
|
55 |
+
- Transformers 4.40.2
|
56 |
+
- Pytorch 2.2.0+cu121
|
57 |
+
- Datasets 2.19.1
|
58 |
+
- Tokenizers 0.19.1
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "./output_final_bge
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "./output_final_bge",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1340612432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bc72b6de20dc182ddd5d911e6d8567c128efa9c45391afb22716395d7ba9347
|
3 |
size 1340612432
|