Update README.md
Browse files
README.md
CHANGED
@@ -1,58 +1,62 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
**
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
###
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
- [
|
41 |
-
- [
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
##
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
}
|
|
|
|
|
|
|
|
|
58 |
```
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
tags:
|
5 |
+
- text-generation-inference
|
6 |
+
---
|
7 |
+
|
8 |
+
<h2 align="center"> <a href="https://arxiv.org/abs/2405.14297">Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models</a></h2>
|
9 |
+
<h5 align="center"> If our project helps you, please give us a star β on <a href="https://github.com/LINs-lab/DynMoE">GitHub</a> and cite our paper!</h2>
|
10 |
+
<h5 align="center">
|
11 |
+
|
12 |
+
## π° News
|
13 |
+
|
14 |
+
- **[2024.5.31]** π₯ Our [code](https://github.com/LINs-lab/DynMoE/) is released!
|
15 |
+
- **[2024.05.25]** π₯ Our **checkpoints** are available now!
|
16 |
+
- **[2024.05.23]** π₯ Our [paper](https://arxiv.org/abs/2405.14297) is released!
|
17 |
+
|
18 |
+
## π What's Interesting?
|
19 |
+
|
20 |
+
**Dynamic Mixture of Experts (DynMoE)** incorporates (1) a novel gating method that enables each token to automatically determine the number of experts to activate. (2) An adaptive process automatically adjusts the number of experts during training.
|
21 |
+
|
22 |
+
### Top-Any Gating
|
23 |
+
|
24 |
+
<video controls src="https://i.imgur.com/bLgNaoH.mp4" title="Top-Any Gating"></video>
|
25 |
+
|
26 |
+
### Adaptive Training Process
|
27 |
+
|
28 |
+
![](https://cdn.jsdelivr.net/gh/QAQdev/Pics@master/uPic/adaptive.png)
|
29 |
+
|
30 |
+
## π‘ Model Details
|
31 |
+
|
32 |
+
- π€ DynMoE-Qwen is a MoE model with **dynamic top-k gating**, finetuned on [LanguageBind/MoE-LLaVA-Qwen-Stage2](https://huggingface.co/LanguageBind/MoE-LLaVA-Qwen-Stage2).
|
33 |
+
- π Our DynMoE-Qwen-1.8B has totally 3.1B parameters, but **only 2.2B are activated!** (average top-k = 1.86)
|
34 |
+
- β With the DynMoE tuning stage, we can complete training on 8 A100 GPUs **within 40 hours.**
|
35 |
+
|
36 |
+
## π Acknowledgement
|
37 |
+
|
38 |
+
We are grateful for the following awesome projects:
|
39 |
+
|
40 |
+
- [tutel](https://github.com/microsoft/tutel)
|
41 |
+
- [DeepSpeed](https://github.com/microsoft/DeepSpeed)
|
42 |
+
- [GMoE](https://github.com/Luodian/Generalizable-Mixture-of-Experts)
|
43 |
+
- [EMoE](https://github.com/qiuzh20/EMoE)
|
44 |
+
- [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA)
|
45 |
+
- [GLUE-X](https://github.com/YangLinyi/GLUE-X)
|
46 |
+
|
47 |
+
## π License
|
48 |
+
|
49 |
+
This project is released under the MIT license as found in the [LICENSE](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md) file.
|
50 |
+
|
51 |
+
## βοΈ Citation
|
52 |
+
|
53 |
+
```tex
|
54 |
+
@misc{guo2024dynamic,
|
55 |
+
title={Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models},
|
56 |
+
author={Yongxin Guo and Zhenglin Cheng and Xiaoying Tang and Tao Lin},
|
57 |
+
year={2024},
|
58 |
+
eprint={2405.14297},
|
59 |
+
archivePrefix={arXiv},
|
60 |
+
primaryClass={cs.LG}
|
61 |
+
}
|
62 |
```
|