Upload 4 files
Browse files- best_model_fusion.pth +3 -0
- model.py +92 -0
- readme.md +20 -0
- train.py +230 -0
best_model_fusion.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:594c76c254dd74e4ce7bb8e051394c9991c40ceaf637570b9c6de9d4f9482134
|
| 3 |
+
size 139372555
|
model.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torchvision.models.video as models
|
| 4 |
+
|
| 5 |
+
class TimeSformerBlock(nn.Module):
|
| 6 |
+
def __init__(self, dim, num_heads, num_frames):
|
| 7 |
+
super().__init__()
|
| 8 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 9 |
+
self.attn_time = nn.MultiheadAttention(dim, num_heads, batch_first=True)
|
| 10 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 11 |
+
self.attn_space = nn.MultiheadAttention(dim, num_heads, batch_first=True)
|
| 12 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 13 |
+
self.mlp = nn.Sequential(
|
| 14 |
+
nn.Linear(dim, dim * 4),
|
| 15 |
+
nn.GELU(),
|
| 16 |
+
nn.Linear(dim * 4, dim)
|
| 17 |
+
)
|
| 18 |
+
self.num_frames = num_frames
|
| 19 |
+
|
| 20 |
+
def forward(self, x):
|
| 21 |
+
B, TP, D = x.shape
|
| 22 |
+
T = self.num_frames
|
| 23 |
+
P = TP // T
|
| 24 |
+
|
| 25 |
+
# Temporal Attention
|
| 26 |
+
xt = x.view(B, T, P, D).permute(0, 2, 1, 3).reshape(B * P, T, D)
|
| 27 |
+
xt_res = xt
|
| 28 |
+
xt = self.norm1(xt)
|
| 29 |
+
xt, _ = self.attn_time(xt, xt, xt)
|
| 30 |
+
xt = xt + xt_res
|
| 31 |
+
x = xt.view(B, P, T, D).permute(0, 2, 1, 3).reshape(B, TP, D)
|
| 32 |
+
|
| 33 |
+
# Spatial Attention
|
| 34 |
+
xs = x.view(B, T, P, D).reshape(B * T, P, D)
|
| 35 |
+
xs_res = xs
|
| 36 |
+
xs = self.norm2(xs)
|
| 37 |
+
xs, _ = self.attn_space(xs, xs, xs)
|
| 38 |
+
xs = xs + xs_res
|
| 39 |
+
x = xs.view(B, T, P, D).reshape(B, TP, D)
|
| 40 |
+
|
| 41 |
+
x = x + self.mlp(self.norm3(x))
|
| 42 |
+
return x
|
| 43 |
+
|
| 44 |
+
class FeatureFusionNetwork(nn.Module):
|
| 45 |
+
def __init__(self):
|
| 46 |
+
super(FeatureFusionNetwork, self).__init__()
|
| 47 |
+
|
| 48 |
+
# Branch 1: Backbone CNN (ResNet3D)
|
| 49 |
+
self.cnn = models.r3d_18(weights=None)
|
| 50 |
+
self.cnn.fc = nn.Identity() # Output 512
|
| 51 |
+
|
| 52 |
+
# Branch 2: TimeSformer Backbone
|
| 53 |
+
self.patch_size = 16
|
| 54 |
+
self.embed_dim = 256
|
| 55 |
+
self.img_size = 112
|
| 56 |
+
self.num_patches = (self.img_size // self.patch_size) ** 2
|
| 57 |
+
self.num_frames = 16 # Default SEQ_LEN
|
| 58 |
+
|
| 59 |
+
self.patch_embed = nn.Conv2d(3, self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size)
|
| 60 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
| 61 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_frames * self.num_patches + 1, self.embed_dim))
|
| 62 |
+
|
| 63 |
+
self.transformer_layer = TimeSformerBlock(self.embed_dim, num_heads=4, num_frames=self.num_frames)
|
| 64 |
+
|
| 65 |
+
self.fusion_fc = nn.Sequential(
|
| 66 |
+
nn.Linear(512 + self.embed_dim, 256),
|
| 67 |
+
nn.ReLU(),
|
| 68 |
+
nn.Dropout(0.5),
|
| 69 |
+
nn.Linear(256, 2)
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
# CNN Pathway
|
| 74 |
+
cnn_feat = self.cnn(x) # (B, 512)
|
| 75 |
+
|
| 76 |
+
# Transformer Pathway
|
| 77 |
+
b, c, t, h, w = x.shape
|
| 78 |
+
x_uv = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
|
| 79 |
+
patches = self.patch_embed(x_uv).flatten(2).transpose(1, 2)
|
| 80 |
+
patches = patches.reshape(b, t * self.num_patches, self.embed_dim)
|
| 81 |
+
|
| 82 |
+
cls_tokens = self.cls_token.expand(b, -1, -1)
|
| 83 |
+
x_trans = torch.cat((cls_tokens, patches), dim=1)
|
| 84 |
+
x_trans = x_trans + self.pos_embed[:, :x_trans.size(1), :]
|
| 85 |
+
|
| 86 |
+
patch_tokens = x_trans[:, 1:, :]
|
| 87 |
+
out_patches = self.transformer_layer(patch_tokens)
|
| 88 |
+
trans_feat = out_patches.mean(dim=1) # (B, D)
|
| 89 |
+
|
| 90 |
+
combined = torch.cat((cnn_feat, trans_feat), dim=1)
|
| 91 |
+
out = self.fusion_fc(combined)
|
| 92 |
+
return out
|
readme.md
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Feature Fusion Network
|
| 2 |
+
|
| 3 |
+
## Model Architecture
|
| 4 |
+
- **Type**: Multi-Modal Hybrid (CNN + Transformer)
|
| 5 |
+
- **Pathway 1 (Spatial)**: ResNet3D (r3d_18) for robust localized feature extraction.
|
| 6 |
+
- **Pathway 2 (Spatiotemporal)**: TimeSformer (Transformer) block dealing with patches and frames to capture long-range dependencies.
|
| 7 |
+
- **Fusion**: Late fusion via concatenation of flattened feature vectors (512 features from CNN + 256 features from Transformer).
|
| 8 |
+
- **Classification Head**: MLP mapping fused features to binary classes.
|
| 9 |
+
|
| 10 |
+
## Dataset Structure
|
| 11 |
+
Expects `Dataset` folder in parent directory.
|
| 12 |
+
```
|
| 13 |
+
Dataset/
|
| 14 |
+
├── violence/
|
| 15 |
+
└── no-violence/
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
## How to Run
|
| 19 |
+
1. Install dependencies: `torch`, `opencv-python`, `scikit-learn`, `numpy`, `torchvision`.
|
| 20 |
+
2. Run `python train.py`.
|
train.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.optim as optim
|
| 7 |
+
from torch.utils.data import Dataset, DataLoader
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
|
| 10 |
+
import torchvision.models.video as models
|
| 11 |
+
import time
|
| 12 |
+
from model import FeatureFusionNetwork
|
| 13 |
+
|
| 14 |
+
# --- Configuration ---
|
| 15 |
+
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 16 |
+
DATASET_DIR = os.path.join(BASE_DIR, "Dataset")
|
| 17 |
+
MODEL_SAVE_PATH = "best_model_fusion.pth"
|
| 18 |
+
|
| 19 |
+
IMG_SIZE = 112
|
| 20 |
+
SEQ_LEN = 16
|
| 21 |
+
BATCH_SIZE = 16
|
| 22 |
+
EPOCHS = 80
|
| 23 |
+
LEARNING_RATE = 1e-4
|
| 24 |
+
PATIENCE = 5
|
| 25 |
+
|
| 26 |
+
# --- Dataset ---
|
| 27 |
+
class StandardDataset(Dataset):
|
| 28 |
+
def __init__(self, video_paths, labels):
|
| 29 |
+
self.video_paths = video_paths
|
| 30 |
+
self.labels = labels
|
| 31 |
+
|
| 32 |
+
def __len__(self):
|
| 33 |
+
return len(self.video_paths)
|
| 34 |
+
|
| 35 |
+
def __getitem__(self, idx):
|
| 36 |
+
path = self.video_paths[idx]
|
| 37 |
+
label = self.labels[idx]
|
| 38 |
+
|
| 39 |
+
cap = cv2.VideoCapture(path)
|
| 40 |
+
frames = []
|
| 41 |
+
try:
|
| 42 |
+
while True:
|
| 43 |
+
ret, frame = cap.read()
|
| 44 |
+
if not ret: break
|
| 45 |
+
frame = cv2.resize(frame, (IMG_SIZE, IMG_SIZE))
|
| 46 |
+
frames.append(frame)
|
| 47 |
+
finally:
|
| 48 |
+
cap.release()
|
| 49 |
+
|
| 50 |
+
if len(frames) == 0:
|
| 51 |
+
frames = np.zeros((SEQ_LEN, IMG_SIZE, IMG_SIZE, 3), dtype=np.float32)
|
| 52 |
+
elif len(frames) < SEQ_LEN:
|
| 53 |
+
while len(frames) < SEQ_LEN: frames.append(frames[-1])
|
| 54 |
+
elif len(frames) > SEQ_LEN:
|
| 55 |
+
indices = np.linspace(0, len(frames)-1, SEQ_LEN, dtype=int)
|
| 56 |
+
frames = [frames[i] for i in indices]
|
| 57 |
+
|
| 58 |
+
frames = np.array(frames, dtype=np.float32) / 255.0
|
| 59 |
+
# (T, H, W, C) -> (C, T, H, W)
|
| 60 |
+
frames = torch.tensor(frames).permute(3, 0, 1, 2)
|
| 61 |
+
return frames, label
|
| 62 |
+
|
| 63 |
+
# --- Data Preparation ---
|
| 64 |
+
def prepare_data():
|
| 65 |
+
violence_dir = os.path.join(DATASET_DIR, 'violence')
|
| 66 |
+
no_violence_dir = os.path.join(DATASET_DIR, 'no-violence')
|
| 67 |
+
|
| 68 |
+
if not os.path.exists(violence_dir) or not os.path.exists(no_violence_dir):
|
| 69 |
+
raise FileNotFoundError("Dataset directories not found.")
|
| 70 |
+
|
| 71 |
+
violence_files = [os.path.join(violence_dir, f) for f in os.listdir(violence_dir) if f.endswith('.avi') or f.endswith('.mp4')]
|
| 72 |
+
no_violence_files = [os.path.join(no_violence_dir, f) for f in os.listdir(no_violence_dir) if f.endswith('.avi') or f.endswith('.mp4')]
|
| 73 |
+
|
| 74 |
+
X = violence_files + no_violence_files
|
| 75 |
+
y = [1] * len(violence_files) + [0] * len(no_violence_files)
|
| 76 |
+
|
| 77 |
+
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.30, random_state=42, stratify=y)
|
| 78 |
+
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.50, random_state=42, stratify=y_temp)
|
| 79 |
+
|
| 80 |
+
return (X_train, y_train), (X_val, y_val), (X_test, y_test)
|
| 81 |
+
|
| 82 |
+
# --- Early Stopping ---
|
| 83 |
+
class EarlyStopping:
|
| 84 |
+
def __init__(self, patience=5, verbose=False, path='checkpoint.pth'):
|
| 85 |
+
self.patience = patience
|
| 86 |
+
self.verbose = verbose
|
| 87 |
+
self.counter = 0
|
| 88 |
+
self.best_score = None
|
| 89 |
+
self.early_stop = False
|
| 90 |
+
self.val_loss_min = np.inf
|
| 91 |
+
self.path = path
|
| 92 |
+
|
| 93 |
+
def __call__(self, val_loss, model):
|
| 94 |
+
score = -val_loss
|
| 95 |
+
if self.best_score is None:
|
| 96 |
+
self.best_score = score
|
| 97 |
+
self.save_checkpoint(val_loss, model)
|
| 98 |
+
elif score < self.best_score:
|
| 99 |
+
self.counter += 1
|
| 100 |
+
if self.verbose:
|
| 101 |
+
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
| 102 |
+
if self.counter >= self.patience:
|
| 103 |
+
self.early_stop = True
|
| 104 |
+
else:
|
| 105 |
+
self.best_score = score
|
| 106 |
+
self.save_checkpoint(val_loss, model)
|
| 107 |
+
self.counter = 0
|
| 108 |
+
|
| 109 |
+
def save_checkpoint(self, val_loss, model):
|
| 110 |
+
if self.verbose:
|
| 111 |
+
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
|
| 112 |
+
torch.save(model, self.path) # FULL MODEL SAVE
|
| 113 |
+
self.val_loss_min = val_loss
|
| 114 |
+
|
| 115 |
+
if __name__ == "__main__":
|
| 116 |
+
start_time = time.time()
|
| 117 |
+
|
| 118 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 119 |
+
print(f"Using device: {device}")
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
(X_train, y_train), (X_val, y_val), (X_test, y_test) = prepare_data()
|
| 123 |
+
print(f"Dataset Split Stats:")
|
| 124 |
+
print(f"Train: {len(X_train)} samples")
|
| 125 |
+
print(f"Val: {len(X_val)} samples")
|
| 126 |
+
print(f"Test: {len(X_test)} samples")
|
| 127 |
+
except Exception as e:
|
| 128 |
+
print(f"Data preparation failed: {e}")
|
| 129 |
+
exit(1)
|
| 130 |
+
|
| 131 |
+
train_dataset = StandardDataset(X_train, y_train)
|
| 132 |
+
val_dataset = StandardDataset(X_val, y_val)
|
| 133 |
+
test_dataset = StandardDataset(X_test, y_test)
|
| 134 |
+
|
| 135 |
+
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
|
| 136 |
+
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
|
| 137 |
+
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
|
| 138 |
+
|
| 139 |
+
model = FeatureFusionNetwork().to(device)
|
| 140 |
+
criterion = nn.CrossEntropyLoss()
|
| 141 |
+
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
| 142 |
+
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=2)
|
| 143 |
+
|
| 144 |
+
early_stopping = EarlyStopping(patience=PATIENCE, verbose=True, path=MODEL_SAVE_PATH)
|
| 145 |
+
|
| 146 |
+
print("\nStarting Feature Fusion Training...")
|
| 147 |
+
|
| 148 |
+
for epoch in range(EPOCHS):
|
| 149 |
+
model.train()
|
| 150 |
+
train_loss = 0.0
|
| 151 |
+
correct = 0
|
| 152 |
+
total = 0
|
| 153 |
+
|
| 154 |
+
for batch_idx, (inputs, labels) in enumerate(train_loader):
|
| 155 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 156 |
+
|
| 157 |
+
optimizer.zero_grad()
|
| 158 |
+
outputs = model(inputs)
|
| 159 |
+
loss = criterion(outputs, labels)
|
| 160 |
+
loss.backward()
|
| 161 |
+
optimizer.step()
|
| 162 |
+
|
| 163 |
+
train_loss += loss.item()
|
| 164 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 165 |
+
total += labels.size(0)
|
| 166 |
+
correct += (predicted == labels).sum().item()
|
| 167 |
+
|
| 168 |
+
if batch_idx % 10 == 0:
|
| 169 |
+
print(f"Epoch {epoch+1} Batch {batch_idx}/{len(train_loader)} Loss: {loss.item():.4f}", end='\r')
|
| 170 |
+
|
| 171 |
+
train_acc = 100 * correct / total
|
| 172 |
+
avg_train_loss = train_loss / len(train_loader)
|
| 173 |
+
|
| 174 |
+
model.eval()
|
| 175 |
+
val_loss = 0.0
|
| 176 |
+
correct_val = 0
|
| 177 |
+
total_val = 0
|
| 178 |
+
|
| 179 |
+
with torch.no_grad():
|
| 180 |
+
for inputs, labels in val_loader:
|
| 181 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 182 |
+
outputs = model(inputs)
|
| 183 |
+
loss = criterion(outputs, labels)
|
| 184 |
+
val_loss += loss.item()
|
| 185 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 186 |
+
total_val += labels.size(0)
|
| 187 |
+
correct_val += (predicted == labels).sum().item()
|
| 188 |
+
|
| 189 |
+
val_acc = 100 * correct_val / total_val
|
| 190 |
+
avg_val_loss = val_loss / len(val_loader)
|
| 191 |
+
|
| 192 |
+
print(f'\nEpoch [{epoch+1}/{EPOCHS}] '
|
| 193 |
+
f'Train Loss: {avg_train_loss:.4f} Acc: {train_acc:.2f}% '
|
| 194 |
+
f'Val Loss: {avg_val_loss:.4f} Acc: {val_acc:.2f}%')
|
| 195 |
+
|
| 196 |
+
scheduler.step(avg_val_loss)
|
| 197 |
+
|
| 198 |
+
early_stopping(avg_val_loss, model)
|
| 199 |
+
if early_stopping.early_stop:
|
| 200 |
+
print("Early stopping triggered")
|
| 201 |
+
break
|
| 202 |
+
|
| 203 |
+
print("\nLoading best Fusion model for evaluation...")
|
| 204 |
+
if os.path.exists(MODEL_SAVE_PATH):
|
| 205 |
+
model = torch.load(MODEL_SAVE_PATH)
|
| 206 |
+
else:
|
| 207 |
+
print("Warning: Model file not found.")
|
| 208 |
+
|
| 209 |
+
model.eval()
|
| 210 |
+
all_preds = []
|
| 211 |
+
all_labels = []
|
| 212 |
+
|
| 213 |
+
print("Evaluating on Test set...")
|
| 214 |
+
with torch.no_grad():
|
| 215 |
+
for inputs, labels in test_loader:
|
| 216 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 217 |
+
outputs = model(inputs)
|
| 218 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 219 |
+
all_preds.extend(predicted.cpu().numpy())
|
| 220 |
+
all_labels.extend(labels.cpu().numpy())
|
| 221 |
+
|
| 222 |
+
print("\n=== Feature Fusion Model Evaluation Report ===")
|
| 223 |
+
print(classification_report(all_labels, all_preds, target_names=['No Violence', 'Violence']))
|
| 224 |
+
print("Confusion Matrix:")
|
| 225 |
+
print(confusion_matrix(all_labels, all_preds))
|
| 226 |
+
acc = accuracy_score(all_labels, all_preds)
|
| 227 |
+
print(f"\nFinal Test Accuracy: {acc*100:.2f}%")
|
| 228 |
+
|
| 229 |
+
elapsed = time.time() - start_time
|
| 230 |
+
print(f"\nTotal execution time: {elapsed/60:.2f} minutes")
|