Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ Korean Pre-Trained Crypto DeBERTa model fine-tuned on BTC sentiment classificati
|
|
5 |
|
6 |
For more details, check our work [CBITS: Crypto BERT Incorporated Trading System](https://ieeexplore.ieee.org/document/10014986) on IEEE Access.
|
7 |
|
8 |
-
## Example Use Case: BTC Sentiment Classification
|
9 |
```python
|
10 |
from transformers import AutoModelForSequenceClassification, AlbertTokenizer
|
11 |
|
@@ -30,7 +30,7 @@ with torch.no_grad():
|
|
30 |
print("호재: {:.2f}% | 악재: {:.2f}% | 중립: {:.2f}%".format(output[0]*100,output[1]*100,output[2]*100))
|
31 |
```
|
32 |
|
33 |
-
## Example Use Case: Crypto Embedding Similarity
|
34 |
```python
|
35 |
from transformers import AutoModelForSequenceClassification, AlbertTokenizer
|
36 |
from scipy.spatial.distance import cdist
|
|
|
5 |
|
6 |
For more details, check our work [CBITS: Crypto BERT Incorporated Trading System](https://ieeexplore.ieee.org/document/10014986) on IEEE Access.
|
7 |
|
8 |
+
## Example Use Case: Crypto News BTC Sentiment Classification
|
9 |
```python
|
10 |
from transformers import AutoModelForSequenceClassification, AlbertTokenizer
|
11 |
|
|
|
30 |
print("호재: {:.2f}% | 악재: {:.2f}% | 중립: {:.2f}%".format(output[0]*100,output[1]*100,output[2]*100))
|
31 |
```
|
32 |
|
33 |
+
## Example Use Case: Crypto News Embedding Similarity
|
34 |
```python
|
35 |
from transformers import AutoModelForSequenceClassification, AlbertTokenizer
|
36 |
from scipy.spatial.distance import cdist
|