End of training
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-2-7b-hf
|
3 |
+
library_name: peft
|
4 |
+
license: llama2
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- dpo
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V2
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.2147
|
22 |
+
- Rewards/chosen: -2.3589
|
23 |
+
- Rewards/rejected: -2.1848
|
24 |
+
- Rewards/accuracies: 0.3333
|
25 |
+
- Rewards/margins: -0.1740
|
26 |
+
- Logps/rejected: -176.9075
|
27 |
+
- Logps/chosen: -185.7344
|
28 |
+
- Logits/rejected: -0.3397
|
29 |
+
- Logits/chosen: -0.3554
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.7064 | 0.3020 | 77 | 0.7263 | -0.0650 | -0.0237 | 0.5 | -0.0414 | -155.2957 | -162.7962 | 0.2969 | 0.2895 |
|
64 |
+
| 0.6816 | 0.6039 | 154 | 0.7127 | -0.1015 | -0.1222 | 0.5 | 0.0207 | -156.2813 | -163.1606 | 0.2989 | 0.2915 |
|
65 |
+
| 0.6192 | 0.9059 | 231 | 0.7010 | -0.0808 | -0.1624 | 0.5833 | 0.0816 | -156.6835 | -162.9536 | 0.2774 | 0.2692 |
|
66 |
+
| 0.2805 | 1.2078 | 308 | 0.8302 | -0.5931 | -0.6582 | 0.6667 | 0.0651 | -161.6412 | -168.0767 | 0.1922 | 0.1839 |
|
67 |
+
| 0.3604 | 1.5098 | 385 | 0.8663 | -0.8552 | -0.8899 | 0.5833 | 0.0347 | -163.9578 | -170.6977 | 0.0866 | 0.0775 |
|
68 |
+
| 0.3524 | 1.8118 | 462 | 0.9587 | -1.3495 | -1.3440 | 0.5 | -0.0055 | -168.4993 | -175.6406 | -0.0538 | -0.0645 |
|
69 |
+
| 0.2168 | 2.1137 | 539 | 1.0785 | -1.8309 | -1.7601 | 0.5833 | -0.0708 | -172.6597 | -180.4545 | -0.2246 | -0.2382 |
|
70 |
+
| 0.0395 | 2.4157 | 616 | 1.2284 | -2.4130 | -2.2406 | 0.3333 | -0.1724 | -177.4654 | -186.2757 | -0.3472 | -0.3633 |
|
71 |
+
| 0.2081 | 2.7176 | 693 | 1.2147 | -2.3589 | -2.1848 | 0.3333 | -0.1740 | -176.9075 | -185.7344 | -0.3397 | -0.3554 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- PEFT 0.12.0
|
77 |
+
- Transformers 4.44.0
|
78 |
+
- Pytorch 2.4.0+cu121
|
79 |
+
- Datasets 3.0.2
|
80 |
+
- Tokenizers 0.19.1
|