KushalRamaiya commited on
Commit
0525cfd
1 Parent(s): 755e69b

First Second PPO Lunar Lander V2

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 239.43 +/- 22.54
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86405dfef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86405dff80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86405e6050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86405e60e0>", "_build": "<function ActorCriticPolicy._build at 0x7f86405e6170>", "forward": "<function ActorCriticPolicy.forward at 0x7f86405e6200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86405e6290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86405e6320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86405e63b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86405e6440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86405e64d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8640634450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652162314.4438865, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKP5V77c1kW87q6EO4dYuDmV4qw9uw1OugAAgD8AAIA/ABoBPa4li7oqPEO7H++Ctn9iA7rgWF86AACAPwAAgD/NClK8KbAqupMWVTp3LumzASEOutoAdbkAAIA/AACAP5ppEjsppE66rlSsOzYPezhbuoE7IvRiugAAgD8AAIA/oLCKPvqfcD/DebO9dY7Ovl2XJT7Nfau9AAAAAAAAAACG6kI+m5jSvBgx4blTCk44KVY7vpYQGTkAAIA/AACAP+ZNvT4UBoC8JWiCuvf7qDgq/Ne9MAmqOQAAgD8AAIA/mvMVvuEHxz6Ovpe9F7XIvvk6jr368Ym9AAAAAAAAAABmUxy+BWCMu+uiFLzBLbi5AYEEPZGHsDoAAIA/AACAPx2Vcr5PwLk+bcZOPaNWI776vso9r6a2PQAAAAAAAAAAhvEdvkjf8DvBFQU84vo1urxHgr166C47AACAPwAAgD89rWK+3xzlPHqD6bqOZKk53g19vlG6KzoAAIA/AACAP2YawLvYeK8/GH0evj5m6L5XnNo6T+aRPAAAAAAAAAAA2oZxPhLFiTw4u7C5t7oKuEZWGD7Tbd04AACAPwAAgD9GD4U+VlLxPq3kV751FpS+UQgDvvPQ0b0AAAAAAAAAALMowT1cywG6gt6KO5o3vzZinbM7zpCiugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8wTCTrESYECUhpRSlIwBbJRN6AOMAXSUR0CCyQtJ4B3idX2UKGgGaAloD0MIKSSZ1TvuQkCUhpRSlGgVTegDaBZHQILUE7nxJ/Z1fZQoaAZoCWgPQwiQatjviZU4QJSGlFKUaBVLrGgWR0CDDpua4MF2dX2UKGgGaAloD0MI4NkeveGeV0CUhpRSlGgVTegDaBZHQIMh5b+tKZl1fZQoaAZoCWgPQwjmBG1yeBJkQJSGlFKUaBVN6ANoFkdAgyQm3nZCfHV9lChoBmgJaA9DCBMKEXAIlRVAlIaUUpRoFUvLaBZHQIMsVEw35vd1fZQoaAZoCWgPQwiZ8iGoGkZfQJSGlFKUaBVN6ANoFkdAg0CktdzGP3V9lChoBmgJaA9DCG5oyk4/WmFAlIaUUpRoFU3oA2gWR0CDQxg2qDK6dX2UKGgGaAloD0MIj95wH7nVLsCUhpRSlGgVS8NoFkdAg0oqdQO4G3V9lChoBmgJaA9DCJwWvOir2mNAlIaUUpRoFU3oA2gWR0CDUkcy31BddX2UKGgGaAloD0MI/+bFia+5VECUhpRSlGgVTegDaBZHQINUvR/mT1V1fZQoaAZoCWgPQwgeiCzSxDsNQJSGlFKUaBVL2mgWR0CDYcZwXIludX2UKGgGaAloD0MIFTlE3JwAV0CUhpRSlGgVTegDaBZHQINmgAIY3vR1fZQoaAZoCWgPQwhCCp5CrjVZQJSGlFKUaBVN6ANoFkdAg2c6oVEeAHV9lChoBmgJaA9DCIJ0sWmlIGFAlIaUUpRoFU3oA2gWR0CDahdVNpM6dX2UKGgGaAloD0MIxVimXyJDWkCUhpRSlGgVTegDaBZHQIN6QgNgBtF1fZQoaAZoCWgPQwj9ag4QzJZkQJSGlFKUaBVN6ANoFkdAg3xhXS0BwXV9lChoBmgJaA9DCK6cvTNaHWFAlIaUUpRoFU3oA2gWR0CDfwOuJUHZdX2UKGgGaAloD0MIYoTwaGPLYkCUhpRSlGgVTegDaBZHQIOIwBBAv+R1fZQoaAZoCWgPQwjQ1OsWgV5VQJSGlFKUaBVN6ANoFkdAg4qwpON5t3V9lChoBmgJaA9DCHR7SWM0QGBAlIaUUpRoFU3oA2gWR0CDll5JK8L8dX2UKGgGaAloD0MIl6jeGtiKOUCUhpRSlGgVS8RoFkdAg5i86vJRwnV9lChoBmgJaA9DCJ1KBoAqli9AlIaUUpRoFUulaBZHQIPTxYs/Y8N1fZQoaAZoCWgPQwheDybFx2BWQJSGlFKUaBVN6ANoFkdAg+TNKZlWfnV9lChoBmgJaA9DCHeFPljGXmVAlIaUUpRoFU3oA2gWR0CD5u22oegddX2UKGgGaAloD0MIXmbYKOt1QECUhpRSlGgVS+1oFkdAg/DxiPQv6HV9lChoBmgJaA9DCIVbPpKS2V9AlIaUUpRoFU3oA2gWR0CEBV+2E0zkdX2UKGgGaAloD0MI85Nqn45FTECUhpRSlGgVS9BoFkdAhAlS5iExqXV9lChoBmgJaA9DCBZQqKePZGdAlIaUUpRoFU24AWgWR0CEEB4+KTB7dX2UKGgGaAloD0MIWFUvv1NyYUCUhpRSlGgVTegDaBZHQIQQdUfgaWJ1fZQoaAZoCWgPQwhdGr/wShYzwJSGlFKUaBVL2GgWR0CEFOUHIIWydX2UKGgGaAloD0MI3zXoS28hXkCUhpRSlGgVTegDaBZHQIQZGWa+evp1fZQoaAZoCWgPQwg/V1uxv2hFwJSGlFKUaBVLg2gWR0CEGpm+TNdJdX2UKGgGaAloD0MIsi5uowGkXUCUhpRSlGgVTegDaBZHQIQbonYxtYV1fZQoaAZoCWgPQwiZSj/h7NJeQJSGlFKUaBVN6ANoFkdAhClmsFMZg3V9lChoBmgJaA9DCA5nfjUHkV9AlIaUUpRoFU3oA2gWR0CELcf5DZ13dX2UKGgGaAloD0MIfJ4/bdSzYUCUhpRSlGgVTegDaBZHQIQug3Jgb6x1fZQoaAZoCWgPQwhuisdFtaAgQJSGlFKUaBVL1mgWR0CELx7LMcIadX2UKGgGaAloD0MItcGJ6NckYkCUhpRSlGgVTegDaBZHQIQxT0e2d/d1fZQoaAZoCWgPQwgwoBfuXOJXQJSGlFKUaBVN6ANoFkdAhD/Ec81XNnV9lChoBmgJaA9DCI0KnGwDW2RAlIaUUpRoFU3oA2gWR0CEQdLq2SdOdX2UKGgGaAloD0MINZvHYTDYYkCUhpRSlGgVTegDaBZHQIRPmF36hxp1fZQoaAZoCWgPQwju0RvuI8cfQJSGlFKUaBVLuGgWR0CEWl0HyEtedX2UKGgGaAloD0MIOq3boHbhYUCUhpRSlGgVTegDaBZHQIRlLr/sE7p1fZQoaAZoCWgPQwigbqDAOwdXQJSGlFKUaBVN6ANoFkdAhKo1gQYk3XV9lChoBmgJaA9DCKYJ20/G4FVAlIaUUpRoFU3oA2gWR0CEy1PMSsbOdX2UKGgGaAloD0MIbcg/M4hHT0CUhpRSlGgVTegDaBZHQITSXpKSPlx1fZQoaAZoCWgPQwhtjnObcNFgQJSGlFKUaBVN6ANoFkdAhNcB19v0iHV9lChoBmgJaA9DCP2jb9I0imBAlIaUUpRoFU3oA2gWR0CE2tV7x/d7dX2UKGgGaAloD0MI6ITQQZcbYUCUhpRSlGgVTegDaBZHQITcN45cTrV1fZQoaAZoCWgPQwiKj0/ITkRiQJSGlFKUaBVN6ANoFkdAhN0h6a9bo3V9lChoBmgJaA9DCB6oUx7d3l9AlIaUUpRoFU3oA2gWR0CE6WS5AhStdX2UKGgGaAloD0MItCJqos+zW0CUhpRSlGgVTegDaBZHQITtmwHJLdx1fZQoaAZoCWgPQwiD+MCOf1diQJSGlFKUaBVN6ANoFkdAhO5Illbu+nV9lChoBmgJaA9DCC8X8Z2YqltAlIaUUpRoFU3oA2gWR0CE7tMh5gPVdX2UKGgGaAloD0MIuRYtQNsHY0CUhpRSlGgVTegDaBZHQITwpwQ176Z1fZQoaAZoCWgPQwiOIJViR+85QJSGlFKUaBVLu2gWR0CE8g6mO2iMdX2UKGgGaAloD0MICU/o9SftYkCUhpRSlGgVTegDaBZHQIT9k8q4H5d1fZQoaAZoCWgPQwj2DOGYZc8nQJSGlFKUaBVLv2gWR0CFCJNdqtYCdX2UKGgGaAloD0MIVkj5SbVWWkCUhpRSlGgVTegDaBZHQIUNjv5P/Jh1fZQoaAZoCWgPQwhINlfNc7JYQJSGlFKUaBVN6ANoFkdAhRhbFjurqHV9lChoBmgJaA9DCOwUqwZh7mFAlIaUUpRoFU3oA2gWR0CFI4JXyRSxdX2UKGgGaAloD0MIe90iMNYCWkCUhpRSlGgVTegDaBZHQIVp07yQPqd1fZQoaAZoCWgPQwg9SE+RQ2xcQJSGlFKUaBVN6ANoFkdAhY2hLXcxkHV9lChoBmgJaA9DCOnUlc/ywDFAlIaUUpRoFUvfaBZHQIWN1RYRuj11fZQoaAZoCWgPQwixh/axgipUQJSGlFKUaBVN6ANoFkdAhZTV6E8JU3V9lChoBmgJaA9DCM2Pv7QoxmBAlIaUUpRoFU3oA2gWR0CFmZmthd+odX2UKGgGaAloD0MIGy0HeqhMXkCUhpRSlGgVTegDaBZHQIWe9fPX05F1fZQoaAZoCWgPQwjeVQ+Yhw1hQJSGlFKUaBVN6ANoFkdAhZ/7/wRXfnV9lChoBmgJaA9DCKmfNxWpxkBAlIaUUpRoFUvNaBZHQIWsUZxaPjp1fZQoaAZoCWgPQwhBLJs5JD5jQJSGlFKUaBVN6ANoFkdAhaz+8oQWe3V9lChoBmgJaA9DCK/PnPWpDGFAlIaUUpRoFU3oA2gWR0CFsWnR9gF5dX2UKGgGaAloD0MIB0KygAn6X0CUhpRSlGgVTegDaBZHQIWyIJb+tKZ1fZQoaAZoCWgPQwjLg/QUucRhQJSGlFKUaBVN6ANoFkdAhbKxOUMXrXV9lChoBmgJaA9DCPAxWHGqtWJAlIaUUpRoFU3oA2gWR0CFtHnM+u/2dX2UKGgGaAloD0MILhwIyYKiYkCUhpRSlGgVTegDaBZHQIXCgFzMibF1fZQoaAZoCWgPQwizRdJu9GEdQJSGlFKUaBVLvWgWR0CFyWYWLxZudX2UKGgGaAloD0MIYB3HD5UXV0CUhpRSlGgVTegDaBZHQIXPBK+SKWN1fZQoaAZoCWgPQwjT+lsC8D9MQJSGlFKUaBVN6ANoFkdAhdQcPvrnknV9lChoBmgJaA9DCKq2m+CbaF1AlIaUUpRoFU3oA2gWR0CF3t7iQ1aXdX2UKGgGaAloD0MIUOJzJ9iQakCUhpRSlGgVTZgBaBZHQIXjeE25xzd1fZQoaAZoCWgPQwiSkbOwp3UxQJSGlFKUaBVL8WgWR0CF5OSL61stdX2UKGgGaAloD0MIutv10hSRO0CUhpRSlGgVTegDaBZHQIXpPVqesgd1fZQoaAZoCWgPQwjp76XwoGBRQJSGlFKUaBVN6ANoFkdAhlIckMTewnV9lChoBmgJaA9DCPROBdzz6V9AlIaUUpRoFU3oA2gWR0CGWV+UhV2idX2UKGgGaAloD0MIP/89eO30YkCUhpRSlGgVTegDaBZHQIZeYClrM1V1fZQoaAZoCWgPQwj2JobkZFpbQJSGlFKUaBVN6ANoFkdAhmRFdC3PRnV9lChoBmgJaA9DCCZxVkTNTWFAlIaUUpRoFU3oA2gWR0CGZVmJWNm2dX2UKGgGaAloD0MIE51lFqGcXUCUhpRSlGgVTegDaBZHQIZyNhuwX691fZQoaAZoCWgPQwj8xAH0+6VVQJSGlFKUaBVN6ANoFkdAhneTTWoWHnV9lChoBmgJaA9DCGB0eXO462ZAlIaUUpRoFU3oA2gWR0CGePQfIS13dX2UKGgGaAloD0MIzy7f+rD/XUCUhpRSlGgVTegDaBZHQIZ7McIZ62R1fZQoaAZoCWgPQwjIsfUMYb9lQJSGlFKUaBVN6ANoFkdAhpLVi4J/onV9lChoBmgJaA9DCDcbKzHPdGRAlIaUUpRoFU3oA2gWR0CGmMgTyrggdX2UKGgGaAloD0MI0zJS7ym4YUCUhpRSlGgVTegDaBZHQIaeHiNsFdN1fZQoaAZoCWgPQwiSsdr8vyRQQJSGlFKUaBVN6ANoFkdAhqnLamGdqnV9lChoBmgJaA9DCPZefNEeM2NAlIaUUpRoFU3oA2gWR0CGrruuRs/IdX2UKGgGaAloD0MIMjhKXp3OY0CUhpRSlGgVTegDaBZHQIawQQarFOx1fZQoaAZoCWgPQwhExM2pZORXQJSGlFKUaBVN6ANoFkdAhrS16eGwinV9lChoBmgJaA9DCOmAJOzb6QtAlIaUUpRoFUvoaBZHQIbAdC3PRiR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_mlp_v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:797a259481bbb2aed34d8b78bf732074e14f9d1509584e1b635ecb1dfd2a8acb
3
+ size 144024
ppo_mlp_v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo_mlp_v1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86405dfef0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86405dff80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86405e6050>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86405e60e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f86405e6170>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f86405e6200>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86405e6290>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f86405e6320>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86405e63b0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86405e6440>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86405e64d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8640634450>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652162314.4438865,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKP5V77c1kW87q6EO4dYuDmV4qw9uw1OugAAgD8AAIA/ABoBPa4li7oqPEO7H++Ctn9iA7rgWF86AACAPwAAgD/NClK8KbAqupMWVTp3LumzASEOutoAdbkAAIA/AACAP5ppEjsppE66rlSsOzYPezhbuoE7IvRiugAAgD8AAIA/oLCKPvqfcD/DebO9dY7Ovl2XJT7Nfau9AAAAAAAAAACG6kI+m5jSvBgx4blTCk44KVY7vpYQGTkAAIA/AACAP+ZNvT4UBoC8JWiCuvf7qDgq/Ne9MAmqOQAAgD8AAIA/mvMVvuEHxz6Ovpe9F7XIvvk6jr368Ym9AAAAAAAAAABmUxy+BWCMu+uiFLzBLbi5AYEEPZGHsDoAAIA/AACAPx2Vcr5PwLk+bcZOPaNWI776vso9r6a2PQAAAAAAAAAAhvEdvkjf8DvBFQU84vo1urxHgr166C47AACAPwAAgD89rWK+3xzlPHqD6bqOZKk53g19vlG6KzoAAIA/AACAP2YawLvYeK8/GH0evj5m6L5XnNo6T+aRPAAAAAAAAAAA2oZxPhLFiTw4u7C5t7oKuEZWGD7Tbd04AACAPwAAgD9GD4U+VlLxPq3kV751FpS+UQgDvvPQ0b0AAAAAAAAAALMowT1cywG6gt6KO5o3vzZinbM7zpCiugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8wTCTrESYECUhpRSlIwBbJRN6AOMAXSUR0CCyQtJ4B3idX2UKGgGaAloD0MIKSSZ1TvuQkCUhpRSlGgVTegDaBZHQILUE7nxJ/Z1fZQoaAZoCWgPQwiQatjviZU4QJSGlFKUaBVLrGgWR0CDDpua4MF2dX2UKGgGaAloD0MI4NkeveGeV0CUhpRSlGgVTegDaBZHQIMh5b+tKZl1fZQoaAZoCWgPQwjmBG1yeBJkQJSGlFKUaBVN6ANoFkdAgyQm3nZCfHV9lChoBmgJaA9DCBMKEXAIlRVAlIaUUpRoFUvLaBZHQIMsVEw35vd1fZQoaAZoCWgPQwiZ8iGoGkZfQJSGlFKUaBVN6ANoFkdAg0CktdzGP3V9lChoBmgJaA9DCG5oyk4/WmFAlIaUUpRoFU3oA2gWR0CDQxg2qDK6dX2UKGgGaAloD0MIj95wH7nVLsCUhpRSlGgVS8NoFkdAg0oqdQO4G3V9lChoBmgJaA9DCJwWvOir2mNAlIaUUpRoFU3oA2gWR0CDUkcy31BddX2UKGgGaAloD0MI/+bFia+5VECUhpRSlGgVTegDaBZHQINUvR/mT1V1fZQoaAZoCWgPQwgeiCzSxDsNQJSGlFKUaBVL2mgWR0CDYcZwXIludX2UKGgGaAloD0MIFTlE3JwAV0CUhpRSlGgVTegDaBZHQINmgAIY3vR1fZQoaAZoCWgPQwhCCp5CrjVZQJSGlFKUaBVN6ANoFkdAg2c6oVEeAHV9lChoBmgJaA9DCIJ0sWmlIGFAlIaUUpRoFU3oA2gWR0CDahdVNpM6dX2UKGgGaAloD0MIxVimXyJDWkCUhpRSlGgVTegDaBZHQIN6QgNgBtF1fZQoaAZoCWgPQwj9ag4QzJZkQJSGlFKUaBVN6ANoFkdAg3xhXS0BwXV9lChoBmgJaA9DCK6cvTNaHWFAlIaUUpRoFU3oA2gWR0CDfwOuJUHZdX2UKGgGaAloD0MIYoTwaGPLYkCUhpRSlGgVTegDaBZHQIOIwBBAv+R1fZQoaAZoCWgPQwjQ1OsWgV5VQJSGlFKUaBVN6ANoFkdAg4qwpON5t3V9lChoBmgJaA9DCHR7SWM0QGBAlIaUUpRoFU3oA2gWR0CDll5JK8L8dX2UKGgGaAloD0MIl6jeGtiKOUCUhpRSlGgVS8RoFkdAg5i86vJRwnV9lChoBmgJaA9DCJ1KBoAqli9AlIaUUpRoFUulaBZHQIPTxYs/Y8N1fZQoaAZoCWgPQwheDybFx2BWQJSGlFKUaBVN6ANoFkdAg+TNKZlWfnV9lChoBmgJaA9DCHeFPljGXmVAlIaUUpRoFU3oA2gWR0CD5u22oegddX2UKGgGaAloD0MIXmbYKOt1QECUhpRSlGgVS+1oFkdAg/DxiPQv6HV9lChoBmgJaA9DCIVbPpKS2V9AlIaUUpRoFU3oA2gWR0CEBV+2E0zkdX2UKGgGaAloD0MI85Nqn45FTECUhpRSlGgVS9BoFkdAhAlS5iExqXV9lChoBmgJaA9DCBZQqKePZGdAlIaUUpRoFU24AWgWR0CEEB4+KTB7dX2UKGgGaAloD0MIWFUvv1NyYUCUhpRSlGgVTegDaBZHQIQQdUfgaWJ1fZQoaAZoCWgPQwhdGr/wShYzwJSGlFKUaBVL2GgWR0CEFOUHIIWydX2UKGgGaAloD0MI3zXoS28hXkCUhpRSlGgVTegDaBZHQIQZGWa+evp1fZQoaAZoCWgPQwg/V1uxv2hFwJSGlFKUaBVLg2gWR0CEGpm+TNdJdX2UKGgGaAloD0MIsi5uowGkXUCUhpRSlGgVTegDaBZHQIQbonYxtYV1fZQoaAZoCWgPQwiZSj/h7NJeQJSGlFKUaBVN6ANoFkdAhClmsFMZg3V9lChoBmgJaA9DCA5nfjUHkV9AlIaUUpRoFU3oA2gWR0CELcf5DZ13dX2UKGgGaAloD0MIfJ4/bdSzYUCUhpRSlGgVTegDaBZHQIQug3Jgb6x1fZQoaAZoCWgPQwhuisdFtaAgQJSGlFKUaBVL1mgWR0CELx7LMcIadX2UKGgGaAloD0MItcGJ6NckYkCUhpRSlGgVTegDaBZHQIQxT0e2d/d1fZQoaAZoCWgPQwgwoBfuXOJXQJSGlFKUaBVN6ANoFkdAhD/Ec81XNnV9lChoBmgJaA9DCI0KnGwDW2RAlIaUUpRoFU3oA2gWR0CEQdLq2SdOdX2UKGgGaAloD0MINZvHYTDYYkCUhpRSlGgVTegDaBZHQIRPmF36hxp1fZQoaAZoCWgPQwju0RvuI8cfQJSGlFKUaBVLuGgWR0CEWl0HyEtedX2UKGgGaAloD0MIOq3boHbhYUCUhpRSlGgVTegDaBZHQIRlLr/sE7p1fZQoaAZoCWgPQwigbqDAOwdXQJSGlFKUaBVN6ANoFkdAhKo1gQYk3XV9lChoBmgJaA9DCKYJ20/G4FVAlIaUUpRoFU3oA2gWR0CEy1PMSsbOdX2UKGgGaAloD0MIbcg/M4hHT0CUhpRSlGgVTegDaBZHQITSXpKSPlx1fZQoaAZoCWgPQwhtjnObcNFgQJSGlFKUaBVN6ANoFkdAhNcB19v0iHV9lChoBmgJaA9DCP2jb9I0imBAlIaUUpRoFU3oA2gWR0CE2tV7x/d7dX2UKGgGaAloD0MI6ITQQZcbYUCUhpRSlGgVTegDaBZHQITcN45cTrV1fZQoaAZoCWgPQwiKj0/ITkRiQJSGlFKUaBVN6ANoFkdAhN0h6a9bo3V9lChoBmgJaA9DCB6oUx7d3l9AlIaUUpRoFU3oA2gWR0CE6WS5AhStdX2UKGgGaAloD0MItCJqos+zW0CUhpRSlGgVTegDaBZHQITtmwHJLdx1fZQoaAZoCWgPQwiD+MCOf1diQJSGlFKUaBVN6ANoFkdAhO5Illbu+nV9lChoBmgJaA9DCC8X8Z2YqltAlIaUUpRoFU3oA2gWR0CE7tMh5gPVdX2UKGgGaAloD0MIuRYtQNsHY0CUhpRSlGgVTegDaBZHQITwpwQ176Z1fZQoaAZoCWgPQwiOIJViR+85QJSGlFKUaBVLu2gWR0CE8g6mO2iMdX2UKGgGaAloD0MICU/o9SftYkCUhpRSlGgVTegDaBZHQIT9k8q4H5d1fZQoaAZoCWgPQwj2DOGYZc8nQJSGlFKUaBVLv2gWR0CFCJNdqtYCdX2UKGgGaAloD0MIVkj5SbVWWkCUhpRSlGgVTegDaBZHQIUNjv5P/Jh1fZQoaAZoCWgPQwhINlfNc7JYQJSGlFKUaBVN6ANoFkdAhRhbFjurqHV9lChoBmgJaA9DCOwUqwZh7mFAlIaUUpRoFU3oA2gWR0CFI4JXyRSxdX2UKGgGaAloD0MIe90iMNYCWkCUhpRSlGgVTegDaBZHQIVp07yQPqd1fZQoaAZoCWgPQwg9SE+RQ2xcQJSGlFKUaBVN6ANoFkdAhY2hLXcxkHV9lChoBmgJaA9DCOnUlc/ywDFAlIaUUpRoFUvfaBZHQIWN1RYRuj11fZQoaAZoCWgPQwixh/axgipUQJSGlFKUaBVN6ANoFkdAhZTV6E8JU3V9lChoBmgJaA9DCM2Pv7QoxmBAlIaUUpRoFU3oA2gWR0CFmZmthd+odX2UKGgGaAloD0MIGy0HeqhMXkCUhpRSlGgVTegDaBZHQIWe9fPX05F1fZQoaAZoCWgPQwjeVQ+Yhw1hQJSGlFKUaBVN6ANoFkdAhZ/7/wRXfnV9lChoBmgJaA9DCKmfNxWpxkBAlIaUUpRoFUvNaBZHQIWsUZxaPjp1fZQoaAZoCWgPQwhBLJs5JD5jQJSGlFKUaBVN6ANoFkdAhaz+8oQWe3V9lChoBmgJaA9DCK/PnPWpDGFAlIaUUpRoFU3oA2gWR0CFsWnR9gF5dX2UKGgGaAloD0MIB0KygAn6X0CUhpRSlGgVTegDaBZHQIWyIJb+tKZ1fZQoaAZoCWgPQwjLg/QUucRhQJSGlFKUaBVN6ANoFkdAhbKxOUMXrXV9lChoBmgJaA9DCPAxWHGqtWJAlIaUUpRoFU3oA2gWR0CFtHnM+u/2dX2UKGgGaAloD0MILhwIyYKiYkCUhpRSlGgVTegDaBZHQIXCgFzMibF1fZQoaAZoCWgPQwizRdJu9GEdQJSGlFKUaBVLvWgWR0CFyWYWLxZudX2UKGgGaAloD0MIYB3HD5UXV0CUhpRSlGgVTegDaBZHQIXPBK+SKWN1fZQoaAZoCWgPQwjT+lsC8D9MQJSGlFKUaBVN6ANoFkdAhdQcPvrnknV9lChoBmgJaA9DCKq2m+CbaF1AlIaUUpRoFU3oA2gWR0CF3t7iQ1aXdX2UKGgGaAloD0MIUOJzJ9iQakCUhpRSlGgVTZgBaBZHQIXjeE25xzd1fZQoaAZoCWgPQwiSkbOwp3UxQJSGlFKUaBVL8WgWR0CF5OSL61stdX2UKGgGaAloD0MIutv10hSRO0CUhpRSlGgVTegDaBZHQIXpPVqesgd1fZQoaAZoCWgPQwjp76XwoGBRQJSGlFKUaBVN6ANoFkdAhlIckMTewnV9lChoBmgJaA9DCPROBdzz6V9AlIaUUpRoFU3oA2gWR0CGWV+UhV2idX2UKGgGaAloD0MIP/89eO30YkCUhpRSlGgVTegDaBZHQIZeYClrM1V1fZQoaAZoCWgPQwj2JobkZFpbQJSGlFKUaBVN6ANoFkdAhmRFdC3PRnV9lChoBmgJaA9DCCZxVkTNTWFAlIaUUpRoFU3oA2gWR0CGZVmJWNm2dX2UKGgGaAloD0MIE51lFqGcXUCUhpRSlGgVTegDaBZHQIZyNhuwX691fZQoaAZoCWgPQwj8xAH0+6VVQJSGlFKUaBVN6ANoFkdAhneTTWoWHnV9lChoBmgJaA9DCGB0eXO462ZAlIaUUpRoFU3oA2gWR0CGePQfIS13dX2UKGgGaAloD0MIzy7f+rD/XUCUhpRSlGgVTegDaBZHQIZ7McIZ62R1fZQoaAZoCWgPQwjIsfUMYb9lQJSGlFKUaBVN6ANoFkdAhpLVi4J/onV9lChoBmgJaA9DCDcbKzHPdGRAlIaUUpRoFU3oA2gWR0CGmMgTyrggdX2UKGgGaAloD0MI0zJS7ym4YUCUhpRSlGgVTegDaBZHQIaeHiNsFdN1fZQoaAZoCWgPQwiSsdr8vyRQQJSGlFKUaBVN6ANoFkdAhqnLamGdqnV9lChoBmgJaA9DCPZefNEeM2NAlIaUUpRoFU3oA2gWR0CGrruuRs/IdX2UKGgGaAloD0MIMjhKXp3OY0CUhpRSlGgVTegDaBZHQIawQQarFOx1fZQoaAZoCWgPQwhExM2pZORXQJSGlFKUaBVN6ANoFkdAhrS16eGwinV9lChoBmgJaA9DCOmAJOzb6QtAlIaUUpRoFUvoaBZHQIbAdC3PRiR1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_mlp_v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3973f0a78e5f471a4407e460b80d64a1b51326ad7e2f4c5bd17f0f83c91f3fe1
3
+ size 84829
ppo_mlp_v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6913a7a90b5ce4f2f008fa32dfd19b227c5056470e691a95a0d378a7e2a437a
3
+ size 43201
ppo_mlp_v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_mlp_v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f58b3e6f67bd57535e0b9a6984855d540e167b8ba15c230262a5ebee774ba8e
3
+ size 202543
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 239.42872560115467, "std_reward": 22.543977532361726, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T06:20:31.042372"}