LunarLander-v2 / config.json
Kurosawama's picture
Primer commit del curso de DRL.
b303404 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79a112e471c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79a112e47250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79a112e472e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79a112e47370>", "_build": "<function ActorCriticPolicy._build at 0x79a112e47400>", "forward": "<function ActorCriticPolicy.forward at 0x79a112e47490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79a112e47520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79a112e475b0>", "_predict": "<function ActorCriticPolicy._predict at 0x79a112e47640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79a112e476d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79a112e47760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79a112e477f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79a0b65034c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732748614834496807, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD1kVb52uGk96U6HPp1FBL56v4U8eghlPQAAAAAAAAAAWknhvV9aAT8akLm8OV/hvhe4hbyiZJg9AAAAAAAAAADAGQm+dKuWPXYubrs3nVu+NEjWuz0f9zsAAAAAAAAAAOZWMj23Jwg/hjqWPBQ79r5nKk49/ryxPQAAAAAAAAAAM2zMPOHykbpeiJozoRPjr/RXLLvFh8KzAACAPwAAgD+AkUc97IKvu2YDpr0zeIq93e3Fu5qjkDwAAIA/AACAPwCpbj2UuLo/cKD6PkErdT2PwoU8BUQ9PgAAAAAAAAAAprKtvVL4mjhr1Ws+5G3bPA595jrW7MM9AACAPwAAgD9TbEo+Qe7evJAxDjqsgZG4rSpFvhRzQ7kAAIA/AACAPxreVr2eJLg/Sp45v6LjxD3HFrs8n+A8vQAAAAAAAAAAk7YqPnVVsj7GFHS9AZ+TvryLkj3SF1a9AAAAAAAAAABNqJs9w+k/utYTH7sPtzo2L7xmumsyqrUAAAAAAAAAAHMBLD7hWJK8ptI4uqeVgDsYxQC+FNmAPAAAgD8AAIA/M78WvVjUrT+zYzi/Z6wFv2stwTzXhjI8AAAAAAAAAACIVJK+ImxYP9P5Tb526gK/nocDv4sxBT0AAAAAAAAAABqHIj7pIR28ltZ+PKubvrrVh429ZruduwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH2sCkoF3aMAWyUS/uMAXSUR0ChN4N1ZDArdX2UKGgGR0BwgXqW1MM7aAdL42gIR0ChOL7tZ3cIdX2UKGgGR0Bxk/WXkYGdaAdNEQFoCEdAoTkzBfrrxHV9lChoBkdAcXYshxHXmWgHS8NoCEdAoTk7Rx95QnV9lChoBkdAY7zeb/ffoGgHTegDaAhHQKE5W2Ifr8l1fZQoaAZHQHLx8RYigTRoB0v5aAhHQKE6j5BTn7p1fZQoaAZHQHGDI6nzg/FoB0vnaAhHQKE6y7rcCYF1fZQoaAZHQHDH5UxVQyhoB0v4aAhHQKE60RNATqV1fZQoaAZHQHC+cabWmP5oB0vjaAhHQKE7PcCYCyR1fZQoaAZHQHCL/NJOFg5oB00CAWgIR0ChO2NGus90dX2UKGgGR0BrzZg5R0lraAdNJwNoCEdAoTtnV09yLnV9lChoBkdAcMTsdkrf+GgHS/9oCEdAoTw6xqwhXHV9lChoBkdAcOZ1qWTouGgHS81oCEdAoTxrhaTwD3V9lChoBkdAcMA9/jKgZmgHS85oCEdAoTzIZ0jkdXV9lChoBkdAcy528IzFdmgHS+BoCEdAoT0Yakyk9HV9lChoBkdAcInxgAp8W2gHS/VoCEdAoT2JuQ6p53V9lChoBkdAXbgmhM8HOmgHTegDaAhHQKE+Jnr6ciJ1fZQoaAZHQGCiOmR/3FloB03oA2gIR0ChPoPPTodNdX2UKGgGR0BuYPNcGC7LaAdL42gIR0ChPo+OfdyldX2UKGgGR0BubJsoDxLCaAdL22gIR0ChPsp8v24/dX2UKGgGR0BzLsrlNlAeaAdNCQFoCEdAoT7rxsl9jXV9lChoBkdAcVUvjfek6GgHS/JoCEdAoT86EnLJS3V9lChoBkdAb9V0U47zTWgHS+BoCEdAoUBGnCO3lXV9lChoBkdAcL9b7CSA6WgHS9ZoCEdAoUBzHbRF7XV9lChoBkdAcfru4wyqMmgHTQABaAhHQKFAcq6vq1R1fZQoaAZHQG1SjFhoduJoB00WAWgIR0ChQJ6Skj5cdX2UKGgGR0BxZRJ17pmmaAdL+WgIR0ChQWLDQ7cPdX2UKGgGR0Bwva2kSElFaAdLvWgIR0ChQWsPjGT+dX2UKGgGR0BwVIyi22G7aAdL32gIR0ChQY0UfxMGdX2UKGgGR0BvpXPszEaVaAdL3mgIR0ChQdvLowEhdX2UKGgGR0BwKEQHzH0caAdL2mgIR0ChQhHhS9/SdX2UKGgGR0BjL1C5VfeDaAdN6ANoCEdAoUJbDXOGCnV9lChoBkdAb4goH9m6G2gHS+NoCEdAoUJZnezlcXV9lChoBkdAcLAXu3MINWgHS+ZoCEdAoUK5Kxs2vXV9lChoBkdAY/Hy8zyjHmgHTegDaAhHQKFCzHQyAQR1fZQoaAZHQGD2URODaoNoB03oA2gIR0ChQza9bor4dX2UKGgGR0BxV7ADaGpNaAdL1GgIR0ChQ48SGrS3dX2UKGgGR0BvBxJmNBGAaAdL3WgIR0ChQ406xPfsdX2UKGgGR0BtD5s9B8hLaAdL0mgIR0ChRLbsWweOdX2UKGgGR0BsyKo/A0sOaAdLzGgIR0ChRPzCLuQZdX2UKGgGR0BxpKizsyBTaAdNBQFoCEdAoUWCJ40Mw3V9lChoBkdAcWpDOTq0MWgHS+ZoCEdAoUXKWC2+f3V9lChoBkdAcIwIXj2i+WgHS8ZoCEdAoUYCWcBltnV9lChoBkdAcJRza9K28mgHS+1oCEdAoUZI5NoJzHV9lChoBkdAcPP6eXiR4mgHS9hoCEdAoUcTynUDuHV9lChoBkdAcglpM6BAfWgHTSoBaAhHQKFHgXWOIZZ1fZQoaAZHQHDUosEq2BtoB0vZaAhHQKFHlWEK3NN1fZQoaAZHQHJgQmqo60ZoB0v+aAhHQKFIf7Q9ic51fZQoaAZHQHDHDFMqSYBoB0vcaAhHQKFJjbL2YfJ1fZQoaAZHQG7qDuBtk4FoB0vdaAhHQKFKB1q33Ht1fZQoaAZHQHDW0+X7cfxoB0vEaAhHQKFKFgNPP9l1fZQoaAZHQHAUWdy1eBxoB0vLaAhHQKFLbuG9Htp1fZQoaAZHQHERl/MGHHpoB0vmaAhHQKFL2diDujR1fZQoaAZHQHF/BjriVB5oB0vBaAhHQKFMZNY8uBd1fZQoaAZHQG+L0v4/NaBoB0vBaAhHQKFNEZVGTcJ1fZQoaAZHQGR9B7NSqERoB03oA2gIR0ChTgZZKWcCdX2UKGgGR0Bz6a9nK4hEaAdNOgFoCEdAoU4l5+pfhXV9lChoBkdAYwvDtw71ZmgHTegDaAhHQKFO8/FBIFx1fZQoaAZHQHDgVum78NxoB0veaAhHQKFPH6u4gA91fZQoaAZHQHFc1eBxxT9oB00KAWgIR0ChT0Dqv/zbdX2UKGgGR0ByydyaNMoMaAdL1mgIR0ChT/WiUPhAdX2UKGgGR0BxEDt+kP+XaAdL42gIR0ChUDunl4kedX2UKGgGR0Bxkjg1m8NAaAdL0WgIR0ChURfXXiBHdX2UKGgGR0BwKrVjI7vHaAdL52gIR0ChUUfMnqmkdX2UKGgGR0BwH8C0WuYAaAdLy2gIR0ChUVHtF8XvdX2UKGgGR0Bv/nSjQAuJaAdL1GgIR0ChUd7Ak9lmdX2UKGgGR0Bw6YN2C/XYaAdL6WgIR0ChUv69TP0JdX2UKGgGR0BxtZ/ZuhsZaAdL2mgIR0ChU5d4mkWRdX2UKGgGR0BvRyRbKRuCaAdL6GgIR0ChU5c/dIoWdX2UKGgGR0Bu5FQwblzVaAdL4mgIR0ChU56C+UQkdX2UKGgGR0BwPJMbm2b5aAdNDwFoCEdAoVO6NfgJkXV9lChoBkdAbLgZ2IO6NGgHS9BoCEdAoVQepuMuOHV9lChoBkdAcP2/vfCQ92gHS9VoCEdAoVR9jmSyMXV9lChoBkdAYLqg8KXv6WgHTegDaAhHQKFVSEqUeMh1fZQoaAZHQHAgZV4oqkNoB0vTaAhHQKFVdkFwDNh1fZQoaAZHQGCZ/iHZbpxoB03oA2gIR0ChVYCfg75mdX2UKGgGR0ByBWSEDhcaaAdL92gIR0ChVeyL61stdX2UKGgGR0BwFVMRHww1aAdL1WgIR0ChVgq0MPSVdX2UKGgGR0Bxr3aVUuL8aAdNBAFoCEdAoVZVMoMKC3V9lChoBkdAYrmWY4Qz12gHTegDaAhHQKFWXPWQOnV1fZQoaAZHQHH3LdvbXYloB0vXaAhHQKFXgaiKziV1fZQoaAZHQHEa1W8yvcJoB0vaaAhHQKFXihGH58B1fZQoaAZHQG6BcZUDMeRoB014AmgIR0ChV54yXUpedX2UKGgGR0Bh5WDnNgSfaAdN6ANoCEdAoVf9Riw0O3V9lChoBkdAcc6yvs7dSGgHTRQBaAhHQKFYDZzPrv91fZQoaAZHQHCaIZhrnDBoB0vzaAhHQKFYEiGFi8Z1fZQoaAZHQHLqjF2mpERoB00CAWgIR0ChWCrFn7HidX2UKGgGR0BvdjQkX1rZaAdL6WgIR0ChWDTYdyT7dX2UKGgGR0BxLLFdcB2faAdL+mgIR0ChWK1V5rxidX2UKGgGR0BzWZIDoyKvaAdL0GgIR0ChWMNdqtYCdX2UKGgGR0Bv3/qkdmxuaAdL12gIR0ChWOVhCtzTdX2UKGgGR0Bw4Xb9If8uaAdL5WgIR0ChWO3A2ycDdX2UKGgGR0Bwsvo3aSLZaAdL3WgIR0ChWaIdELH/dX2UKGgGR0Bwl5LHuJDWaAdNDwFoCEdAoVp2THKfWnV9lChoBkdAca6hrnDBM2gHS9doCEdAoVqoieNDMXV9lChoBkdAb1yb4Ju2qmgHS8VoCEdAoVrTpA2Q4nV9lChoBkdAcCRhEBsAN2gHS+9oCEdAoVsXDvVmSXV9lChoBkdAcwjZy+6AfGgHTRUBaAhHQKFb79H+ZPV1fZQoaAZHQHGIX+dbxExoB0vNaAhHQKFcBVDKHO91fZQoaAZHQG+u+NcW0qpoB00AAWgIR0ChXA+IMz/IdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}