Kukesan commited on
Commit
c35722f
1 Parent(s): 5355cc9

added model through google colab

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/phi-2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/phi-2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "v_proj",
25
+ "q_proj",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40b7a0699805f82e7364178345ff1b4b3329411645fd5dfdfe93fe55b55aa886
3
+ size 83920464
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81cd0099ef92c6361f4f423a357b18f5421462005016d7161240e7a7f391d298
3
+ size 1128
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b7fc47be3406f34282454b00c58d050729f752ef99c4b6d41ebba72b98bdd6f
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7b5bf190dc871967c45091d9f1ab233b2d2ed62baca21fee5dfedb5718ffa5d
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 50.63291139240506,
5
+ "eval_steps": 25,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.2658227848101267,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 0.00019696969696969698,
15
+ "loss": 3.653,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 1.2658227848101267,
20
+ "eval_loss": 3.791062116622925,
21
+ "eval_runtime": 0.3728,
22
+ "eval_samples_per_second": 53.654,
23
+ "eval_steps_per_second": 8.048,
24
+ "step": 25
25
+ },
26
+ {
27
+ "epoch": 2.5316455696202533,
28
+ "grad_norm": 0.0,
29
+ "learning_rate": 0.00019191919191919191,
30
+ "loss": 3.661,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 2.5316455696202533,
35
+ "eval_loss": 3.791062116622925,
36
+ "eval_runtime": 0.366,
37
+ "eval_samples_per_second": 54.652,
38
+ "eval_steps_per_second": 8.198,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 3.7974683544303796,
43
+ "grad_norm": 0.0,
44
+ "learning_rate": 0.00018686868686868687,
45
+ "loss": 3.6566,
46
+ "step": 75
47
+ },
48
+ {
49
+ "epoch": 3.7974683544303796,
50
+ "eval_loss": 3.791062116622925,
51
+ "eval_runtime": 0.36,
52
+ "eval_samples_per_second": 55.559,
53
+ "eval_steps_per_second": 8.334,
54
+ "step": 75
55
+ },
56
+ {
57
+ "epoch": 5.063291139240507,
58
+ "grad_norm": 0.0,
59
+ "learning_rate": 0.00018181818181818183,
60
+ "loss": 3.6562,
61
+ "step": 100
62
+ },
63
+ {
64
+ "epoch": 5.063291139240507,
65
+ "eval_loss": 3.791062116622925,
66
+ "eval_runtime": 0.3575,
67
+ "eval_samples_per_second": 55.943,
68
+ "eval_steps_per_second": 8.391,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 6.329113924050633,
73
+ "grad_norm": 0.0,
74
+ "learning_rate": 0.0001767676767676768,
75
+ "loss": 3.6384,
76
+ "step": 125
77
+ },
78
+ {
79
+ "epoch": 6.329113924050633,
80
+ "eval_loss": 3.791062116622925,
81
+ "eval_runtime": 0.3524,
82
+ "eval_samples_per_second": 56.761,
83
+ "eval_steps_per_second": 8.514,
84
+ "step": 125
85
+ },
86
+ {
87
+ "epoch": 7.594936708860759,
88
+ "grad_norm": 0.0,
89
+ "learning_rate": 0.00017171717171717173,
90
+ "loss": 3.6585,
91
+ "step": 150
92
+ },
93
+ {
94
+ "epoch": 7.594936708860759,
95
+ "eval_loss": 3.791062116622925,
96
+ "eval_runtime": 0.3546,
97
+ "eval_samples_per_second": 56.397,
98
+ "eval_steps_per_second": 8.459,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 8.860759493670885,
103
+ "grad_norm": 0.0,
104
+ "learning_rate": 0.0001666666666666667,
105
+ "loss": 3.6454,
106
+ "step": 175
107
+ },
108
+ {
109
+ "epoch": 8.860759493670885,
110
+ "eval_loss": 3.791062116622925,
111
+ "eval_runtime": 0.3607,
112
+ "eval_samples_per_second": 55.454,
113
+ "eval_steps_per_second": 8.318,
114
+ "step": 175
115
+ },
116
+ {
117
+ "epoch": 10.126582278481013,
118
+ "grad_norm": 0.0,
119
+ "learning_rate": 0.00016161616161616162,
120
+ "loss": 3.667,
121
+ "step": 200
122
+ },
123
+ {
124
+ "epoch": 10.126582278481013,
125
+ "eval_loss": 3.791062116622925,
126
+ "eval_runtime": 0.3664,
127
+ "eval_samples_per_second": 54.588,
128
+ "eval_steps_per_second": 8.188,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 11.39240506329114,
133
+ "grad_norm": 0.0,
134
+ "learning_rate": 0.00015656565656565658,
135
+ "loss": 3.6564,
136
+ "step": 225
137
+ },
138
+ {
139
+ "epoch": 11.39240506329114,
140
+ "eval_loss": 3.791062116622925,
141
+ "eval_runtime": 0.366,
142
+ "eval_samples_per_second": 54.65,
143
+ "eval_steps_per_second": 8.198,
144
+ "step": 225
145
+ },
146
+ {
147
+ "epoch": 12.658227848101266,
148
+ "grad_norm": 0.0,
149
+ "learning_rate": 0.00015151515151515152,
150
+ "loss": 3.6437,
151
+ "step": 250
152
+ },
153
+ {
154
+ "epoch": 12.658227848101266,
155
+ "eval_loss": 3.791062116622925,
156
+ "eval_runtime": 0.3608,
157
+ "eval_samples_per_second": 55.435,
158
+ "eval_steps_per_second": 8.315,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 13.924050632911392,
163
+ "grad_norm": 0.0,
164
+ "learning_rate": 0.00014646464646464648,
165
+ "loss": 3.6569,
166
+ "step": 275
167
+ },
168
+ {
169
+ "epoch": 13.924050632911392,
170
+ "eval_loss": 3.791062116622925,
171
+ "eval_runtime": 0.3681,
172
+ "eval_samples_per_second": 54.334,
173
+ "eval_steps_per_second": 8.15,
174
+ "step": 275
175
+ },
176
+ {
177
+ "epoch": 15.189873417721518,
178
+ "grad_norm": 0.0,
179
+ "learning_rate": 0.0001414141414141414,
180
+ "loss": 3.6336,
181
+ "step": 300
182
+ },
183
+ {
184
+ "epoch": 15.189873417721518,
185
+ "eval_loss": 3.791062116622925,
186
+ "eval_runtime": 0.3786,
187
+ "eval_samples_per_second": 52.829,
188
+ "eval_steps_per_second": 7.924,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 16.455696202531644,
193
+ "grad_norm": 0.0,
194
+ "learning_rate": 0.00013636363636363637,
195
+ "loss": 3.6463,
196
+ "step": 325
197
+ },
198
+ {
199
+ "epoch": 16.455696202531644,
200
+ "eval_loss": 3.791062116622925,
201
+ "eval_runtime": 0.3653,
202
+ "eval_samples_per_second": 54.756,
203
+ "eval_steps_per_second": 8.213,
204
+ "step": 325
205
+ },
206
+ {
207
+ "epoch": 17.72151898734177,
208
+ "grad_norm": 0.0,
209
+ "learning_rate": 0.00013131313131313133,
210
+ "loss": 3.6615,
211
+ "step": 350
212
+ },
213
+ {
214
+ "epoch": 17.72151898734177,
215
+ "eval_loss": 3.791062116622925,
216
+ "eval_runtime": 0.3677,
217
+ "eval_samples_per_second": 54.397,
218
+ "eval_steps_per_second": 8.16,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 18.9873417721519,
223
+ "grad_norm": 0.0,
224
+ "learning_rate": 0.00012626262626262626,
225
+ "loss": 3.6409,
226
+ "step": 375
227
+ },
228
+ {
229
+ "epoch": 18.9873417721519,
230
+ "eval_loss": 3.791062116622925,
231
+ "eval_runtime": 0.365,
232
+ "eval_samples_per_second": 54.799,
233
+ "eval_steps_per_second": 8.22,
234
+ "step": 375
235
+ },
236
+ {
237
+ "epoch": 20.253164556962027,
238
+ "grad_norm": 0.0,
239
+ "learning_rate": 0.00012121212121212122,
240
+ "loss": 3.647,
241
+ "step": 400
242
+ },
243
+ {
244
+ "epoch": 20.253164556962027,
245
+ "eval_loss": 3.791062116622925,
246
+ "eval_runtime": 0.3733,
247
+ "eval_samples_per_second": 53.579,
248
+ "eval_steps_per_second": 8.037,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 21.518987341772153,
253
+ "grad_norm": 0.0,
254
+ "learning_rate": 0.00011616161616161616,
255
+ "loss": 3.6702,
256
+ "step": 425
257
+ },
258
+ {
259
+ "epoch": 21.518987341772153,
260
+ "eval_loss": 3.791062116622925,
261
+ "eval_runtime": 0.3653,
262
+ "eval_samples_per_second": 54.748,
263
+ "eval_steps_per_second": 8.212,
264
+ "step": 425
265
+ },
266
+ {
267
+ "epoch": 22.78481012658228,
268
+ "grad_norm": 0.0,
269
+ "learning_rate": 0.00011111111111111112,
270
+ "loss": 3.6336,
271
+ "step": 450
272
+ },
273
+ {
274
+ "epoch": 22.78481012658228,
275
+ "eval_loss": 3.791062116622925,
276
+ "eval_runtime": 0.3648,
277
+ "eval_samples_per_second": 54.832,
278
+ "eval_steps_per_second": 8.225,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 24.050632911392405,
283
+ "grad_norm": 0.0,
284
+ "learning_rate": 0.00010606060606060606,
285
+ "loss": 3.6546,
286
+ "step": 475
287
+ },
288
+ {
289
+ "epoch": 24.050632911392405,
290
+ "eval_loss": 3.791062116622925,
291
+ "eval_runtime": 0.3614,
292
+ "eval_samples_per_second": 55.34,
293
+ "eval_steps_per_second": 8.301,
294
+ "step": 475
295
+ },
296
+ {
297
+ "epoch": 25.31645569620253,
298
+ "grad_norm": 0.0,
299
+ "learning_rate": 0.00010101010101010102,
300
+ "loss": 3.6487,
301
+ "step": 500
302
+ },
303
+ {
304
+ "epoch": 25.31645569620253,
305
+ "eval_loss": 3.791062116622925,
306
+ "eval_runtime": 0.3549,
307
+ "eval_samples_per_second": 56.359,
308
+ "eval_steps_per_second": 8.454,
309
+ "step": 500
310
+ },
311
+ {
312
+ "epoch": 26.582278481012658,
313
+ "grad_norm": 0.0,
314
+ "learning_rate": 9.595959595959596e-05,
315
+ "loss": 3.6221,
316
+ "step": 525
317
+ },
318
+ {
319
+ "epoch": 26.582278481012658,
320
+ "eval_loss": 3.791062116622925,
321
+ "eval_runtime": 0.3694,
322
+ "eval_samples_per_second": 54.137,
323
+ "eval_steps_per_second": 8.121,
324
+ "step": 525
325
+ },
326
+ {
327
+ "epoch": 27.848101265822784,
328
+ "grad_norm": 0.0,
329
+ "learning_rate": 9.090909090909092e-05,
330
+ "loss": 3.644,
331
+ "step": 550
332
+ },
333
+ {
334
+ "epoch": 27.848101265822784,
335
+ "eval_loss": 3.791062116622925,
336
+ "eval_runtime": 0.3655,
337
+ "eval_samples_per_second": 54.72,
338
+ "eval_steps_per_second": 8.208,
339
+ "step": 550
340
+ },
341
+ {
342
+ "epoch": 29.11392405063291,
343
+ "grad_norm": 0.0,
344
+ "learning_rate": 8.585858585858586e-05,
345
+ "loss": 3.6389,
346
+ "step": 575
347
+ },
348
+ {
349
+ "epoch": 29.11392405063291,
350
+ "eval_loss": 3.791062116622925,
351
+ "eval_runtime": 0.3643,
352
+ "eval_samples_per_second": 54.896,
353
+ "eval_steps_per_second": 8.234,
354
+ "step": 575
355
+ },
356
+ {
357
+ "epoch": 30.379746835443036,
358
+ "grad_norm": 0.0,
359
+ "learning_rate": 8.080808080808081e-05,
360
+ "loss": 3.656,
361
+ "step": 600
362
+ },
363
+ {
364
+ "epoch": 30.379746835443036,
365
+ "eval_loss": 3.791062116622925,
366
+ "eval_runtime": 0.3693,
367
+ "eval_samples_per_second": 54.156,
368
+ "eval_steps_per_second": 8.123,
369
+ "step": 600
370
+ },
371
+ {
372
+ "epoch": 31.645569620253166,
373
+ "grad_norm": 0.0,
374
+ "learning_rate": 7.575757575757576e-05,
375
+ "loss": 3.6414,
376
+ "step": 625
377
+ },
378
+ {
379
+ "epoch": 31.645569620253166,
380
+ "eval_loss": 3.791062116622925,
381
+ "eval_runtime": 0.3634,
382
+ "eval_samples_per_second": 55.039,
383
+ "eval_steps_per_second": 8.256,
384
+ "step": 625
385
+ },
386
+ {
387
+ "epoch": 32.91139240506329,
388
+ "grad_norm": 0.0,
389
+ "learning_rate": 7.07070707070707e-05,
390
+ "loss": 3.6422,
391
+ "step": 650
392
+ },
393
+ {
394
+ "epoch": 32.91139240506329,
395
+ "eval_loss": 3.791062116622925,
396
+ "eval_runtime": 0.3731,
397
+ "eval_samples_per_second": 53.611,
398
+ "eval_steps_per_second": 8.042,
399
+ "step": 650
400
+ },
401
+ {
402
+ "epoch": 34.177215189873415,
403
+ "grad_norm": 0.0,
404
+ "learning_rate": 6.565656565656566e-05,
405
+ "loss": 3.6396,
406
+ "step": 675
407
+ },
408
+ {
409
+ "epoch": 34.177215189873415,
410
+ "eval_loss": 3.791062116622925,
411
+ "eval_runtime": 0.3707,
412
+ "eval_samples_per_second": 53.955,
413
+ "eval_steps_per_second": 8.093,
414
+ "step": 675
415
+ },
416
+ {
417
+ "epoch": 35.44303797468354,
418
+ "grad_norm": 0.0,
419
+ "learning_rate": 6.060606060606061e-05,
420
+ "loss": 3.6658,
421
+ "step": 700
422
+ },
423
+ {
424
+ "epoch": 35.44303797468354,
425
+ "eval_loss": 3.791062116622925,
426
+ "eval_runtime": 0.3884,
427
+ "eval_samples_per_second": 51.489,
428
+ "eval_steps_per_second": 7.723,
429
+ "step": 700
430
+ },
431
+ {
432
+ "epoch": 36.70886075949367,
433
+ "grad_norm": 0.0,
434
+ "learning_rate": 5.555555555555556e-05,
435
+ "loss": 3.6473,
436
+ "step": 725
437
+ },
438
+ {
439
+ "epoch": 36.70886075949367,
440
+ "eval_loss": 3.791062116622925,
441
+ "eval_runtime": 0.3649,
442
+ "eval_samples_per_second": 54.809,
443
+ "eval_steps_per_second": 8.221,
444
+ "step": 725
445
+ },
446
+ {
447
+ "epoch": 37.9746835443038,
448
+ "grad_norm": 0.0,
449
+ "learning_rate": 5.050505050505051e-05,
450
+ "loss": 3.6263,
451
+ "step": 750
452
+ },
453
+ {
454
+ "epoch": 37.9746835443038,
455
+ "eval_loss": 3.791062116622925,
456
+ "eval_runtime": 0.3636,
457
+ "eval_samples_per_second": 55.009,
458
+ "eval_steps_per_second": 8.251,
459
+ "step": 750
460
+ },
461
+ {
462
+ "epoch": 39.24050632911393,
463
+ "grad_norm": 0.0,
464
+ "learning_rate": 4.545454545454546e-05,
465
+ "loss": 3.6617,
466
+ "step": 775
467
+ },
468
+ {
469
+ "epoch": 39.24050632911393,
470
+ "eval_loss": 3.791062116622925,
471
+ "eval_runtime": 0.3597,
472
+ "eval_samples_per_second": 55.595,
473
+ "eval_steps_per_second": 8.339,
474
+ "step": 775
475
+ },
476
+ {
477
+ "epoch": 40.50632911392405,
478
+ "grad_norm": 0.0,
479
+ "learning_rate": 4.0404040404040405e-05,
480
+ "loss": 3.6533,
481
+ "step": 800
482
+ },
483
+ {
484
+ "epoch": 40.50632911392405,
485
+ "eval_loss": 3.791062116622925,
486
+ "eval_runtime": 0.3586,
487
+ "eval_samples_per_second": 55.77,
488
+ "eval_steps_per_second": 8.366,
489
+ "step": 800
490
+ },
491
+ {
492
+ "epoch": 41.77215189873418,
493
+ "grad_norm": 0.0,
494
+ "learning_rate": 3.535353535353535e-05,
495
+ "loss": 3.6451,
496
+ "step": 825
497
+ },
498
+ {
499
+ "epoch": 41.77215189873418,
500
+ "eval_loss": 3.791062116622925,
501
+ "eval_runtime": 0.365,
502
+ "eval_samples_per_second": 54.797,
503
+ "eval_steps_per_second": 8.22,
504
+ "step": 825
505
+ },
506
+ {
507
+ "epoch": 43.037974683544306,
508
+ "grad_norm": 0.0,
509
+ "learning_rate": 3.0303030303030306e-05,
510
+ "loss": 3.6378,
511
+ "step": 850
512
+ },
513
+ {
514
+ "epoch": 43.037974683544306,
515
+ "eval_loss": 3.791062116622925,
516
+ "eval_runtime": 0.3685,
517
+ "eval_samples_per_second": 54.277,
518
+ "eval_steps_per_second": 8.142,
519
+ "step": 850
520
+ },
521
+ {
522
+ "epoch": 44.30379746835443,
523
+ "grad_norm": 0.0,
524
+ "learning_rate": 2.5252525252525256e-05,
525
+ "loss": 3.6434,
526
+ "step": 875
527
+ },
528
+ {
529
+ "epoch": 44.30379746835443,
530
+ "eval_loss": 3.791062116622925,
531
+ "eval_runtime": 0.3608,
532
+ "eval_samples_per_second": 55.439,
533
+ "eval_steps_per_second": 8.316,
534
+ "step": 875
535
+ },
536
+ {
537
+ "epoch": 45.56962025316456,
538
+ "grad_norm": 0.0,
539
+ "learning_rate": 2.0202020202020203e-05,
540
+ "loss": 3.6663,
541
+ "step": 900
542
+ },
543
+ {
544
+ "epoch": 45.56962025316456,
545
+ "eval_loss": 3.791062116622925,
546
+ "eval_runtime": 0.3668,
547
+ "eval_samples_per_second": 54.52,
548
+ "eval_steps_per_second": 8.178,
549
+ "step": 900
550
+ },
551
+ {
552
+ "epoch": 46.835443037974684,
553
+ "grad_norm": 0.0,
554
+ "learning_rate": 1.5151515151515153e-05,
555
+ "loss": 3.6625,
556
+ "step": 925
557
+ },
558
+ {
559
+ "epoch": 46.835443037974684,
560
+ "eval_loss": 3.791062116622925,
561
+ "eval_runtime": 0.3641,
562
+ "eval_samples_per_second": 54.926,
563
+ "eval_steps_per_second": 8.239,
564
+ "step": 925
565
+ },
566
+ {
567
+ "epoch": 48.10126582278481,
568
+ "grad_norm": 0.0,
569
+ "learning_rate": 1.0101010101010101e-05,
570
+ "loss": 3.6488,
571
+ "step": 950
572
+ },
573
+ {
574
+ "epoch": 48.10126582278481,
575
+ "eval_loss": 3.791062116622925,
576
+ "eval_runtime": 0.3619,
577
+ "eval_samples_per_second": 55.257,
578
+ "eval_steps_per_second": 8.289,
579
+ "step": 950
580
+ },
581
+ {
582
+ "epoch": 49.36708860759494,
583
+ "grad_norm": 0.0,
584
+ "learning_rate": 5.050505050505051e-06,
585
+ "loss": 3.6441,
586
+ "step": 975
587
+ },
588
+ {
589
+ "epoch": 49.36708860759494,
590
+ "eval_loss": 3.791062116622925,
591
+ "eval_runtime": 0.3685,
592
+ "eval_samples_per_second": 54.269,
593
+ "eval_steps_per_second": 8.14,
594
+ "step": 975
595
+ },
596
+ {
597
+ "epoch": 50.63291139240506,
598
+ "grad_norm": 0.0,
599
+ "learning_rate": 0.0,
600
+ "loss": 3.6187,
601
+ "step": 1000
602
+ },
603
+ {
604
+ "epoch": 50.63291139240506,
605
+ "eval_loss": 3.791062116622925,
606
+ "eval_runtime": 0.3719,
607
+ "eval_samples_per_second": 53.775,
608
+ "eval_steps_per_second": 8.066,
609
+ "step": 1000
610
+ }
611
+ ],
612
+ "logging_steps": 25,
613
+ "max_steps": 1000,
614
+ "num_input_tokens_seen": 0,
615
+ "num_train_epochs": 53,
616
+ "save_steps": 25,
617
+ "stateful_callbacks": {
618
+ "TrainerControl": {
619
+ "args": {
620
+ "should_epoch_stop": false,
621
+ "should_evaluate": false,
622
+ "should_log": false,
623
+ "should_save": true,
624
+ "should_training_stop": true
625
+ },
626
+ "attributes": {}
627
+ }
628
+ },
629
+ "total_flos": 2138672638863360.0,
630
+ "train_batch_size": 1,
631
+ "trial_name": null,
632
+ "trial_params": null
633
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc0777561bdc0bcb53677c10dc14f541322ada94f28bd0f958c38ca992724d21
3
+ size 5112