Kriyans commited on
Commit
eb4e2ba
1 Parent(s): 5356a50

End of training

Browse files
Files changed (2) hide show
  1. README.md +16 -16
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.7254647322919372
29
  - name: Recall
30
  type: recall
31
- value: 0.8467001558981465
32
  - name: F1
33
  type: f1
34
- value: 0.7814079891293488
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.8557099199430039
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # Bert-NER
44
 
45
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.9081
48
- - Precision: 0.7255
49
- - Recall: 0.8467
50
- - F1: 0.7814
51
- - Accuracy: 0.8557
52
 
53
  ## Model description
54
 
@@ -79,11 +79,11 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0934 | 1.0 | 501 | 0.6938 | 0.7190 | 0.8536 | 0.7805 | 0.8502 |
83
- | 0.035 | 2.0 | 1002 | 0.7709 | 0.7087 | 0.8383 | 0.7681 | 0.8446 |
84
- | 0.0196 | 3.0 | 1503 | 0.7814 | 0.7130 | 0.8439 | 0.7729 | 0.8477 |
85
- | 0.0109 | 4.0 | 2004 | 0.8572 | 0.7206 | 0.8467 | 0.7786 | 0.8526 |
86
- | 0.0065 | 5.0 | 2505 | 0.9081 | 0.7255 | 0.8467 | 0.7814 | 0.8557 |
87
 
88
 
89
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
+ base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.7561565191116483
29
  - name: Recall
30
  type: recall
31
+ value: 0.8669669149489001
32
  - name: F1
33
  type: f1
34
+ value: 0.8077792123950935
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.8755273074976095
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # Bert-NER
44
 
45
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.8575
48
+ - Precision: 0.7562
49
+ - Recall: 0.8670
50
+ - F1: 0.8078
51
+ - Accuracy: 0.8755
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0834 | 1.0 | 501 | 0.6801 | 0.7540 | 0.8716 | 0.8085 | 0.8742 |
83
+ | 0.0312 | 2.0 | 1002 | 0.7170 | 0.7414 | 0.8513 | 0.7926 | 0.8689 |
84
+ | 0.0172 | 3.0 | 1503 | 0.7913 | 0.7417 | 0.8562 | 0.7948 | 0.8689 |
85
+ | 0.0098 | 4.0 | 2004 | 0.7793 | 0.7517 | 0.8610 | 0.8026 | 0.8728 |
86
+ | 0.0059 | 5.0 | 2505 | 0.8575 | 0.7562 | 0.8670 | 0.8078 | 0.8755 |
87
 
88
 
89
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:746d793870fdb55e3985e427a485a24898b787b7d66ac87faf600a704b519c5e
3
  size 435649705
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1df5bcea77bbdbd84c492481f876d81f5573ffd2bc5eacb640cca5b76187dc4
3
  size 435649705