End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,11 +79,11 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9994683935820607
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.999371798588963
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9994200937515101
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9998144414067816
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0018
|
48 |
+
- Precision: 0.9995
|
49 |
+
- Recall: 0.9994
|
50 |
+
- F1: 0.9994
|
51 |
+
- Accuracy: 0.9998
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.1459 | 1.0 | 533 | 0.0584 | 0.9602 | 0.9620 | 0.9611 | 0.9876 |
|
83 |
+
| 0.0546 | 2.0 | 1066 | 0.0237 | 0.9866 | 0.9866 | 0.9866 | 0.9957 |
|
84 |
+
| 0.025 | 3.0 | 1599 | 0.0080 | 0.9967 | 0.9945 | 0.9956 | 0.9985 |
|
85 |
+
| 0.0116 | 4.0 | 2132 | 0.0040 | 0.9980 | 0.9979 | 0.9980 | 0.9994 |
|
86 |
+
| 0.0058 | 5.0 | 2665 | 0.0018 | 0.9995 | 0.9994 | 0.9994 | 0.9998 |
|
87 |
|
88 |
|
89 |
### Framework versions
|