End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,11 +79,11 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9950245302230862
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9949324324324325
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9949784791965567
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9976269686240996
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0019
|
48 |
+
- Precision: 0.9950
|
49 |
+
- Recall: 0.9949
|
50 |
+
- F1: 0.9950
|
51 |
+
- Accuracy: 0.9976
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0679 | 1.0 | 688 | 0.0131 | 0.9998 | 0.9826 | 0.9911 | 0.9920 |
|
83 |
+
| 0.0331 | 2.0 | 1376 | 0.0085 | 0.9998 | 0.9826 | 0.9911 | 0.9921 |
|
84 |
+
| 0.0248 | 3.0 | 2064 | 0.0057 | 0.9999 | 0.9826 | 0.9912 | 0.9921 |
|
85 |
+
| 0.0155 | 4.0 | 2752 | 0.0026 | 0.9948 | 0.9936 | 0.9942 | 0.9969 |
|
86 |
+
| 0.0103 | 5.0 | 3440 | 0.0019 | 0.9950 | 0.9949 | 0.9950 | 0.9976 |
|
87 |
|
88 |
|
89 |
### Framework versions
|