KristofGaming39
commited on
Commit
•
f3a6572
1
Parent(s):
83a5b01
Create codeimadefortraining.py
Browse filesThis is the code that i made for the AI training :>
- codeimadefortraining.py +60 -0
codeimadefortraining.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# !!!! MODEL TRAINED BY ME (@KristofGaming39)!!!!
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torchvision
|
5 |
+
from torchvision.models import resnet50
|
6 |
+
from torchvision.transforms import transforms
|
7 |
+
from torch.utils.data import DataLoader, Dataset
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
class RobloxDataset(Dataset):
|
11 |
+
def __init__(self, root_dir, transform=None):
|
12 |
+
self.root_dir = root_dir
|
13 |
+
self.transform = transform
|
14 |
+
|
15 |
+
def __len__(self):
|
16 |
+
return 15
|
17 |
+
|
18 |
+
def __getitem__(self, idx):
|
19 |
+
img_path = f'{self.root_dir}/Character/human{str(idx+1).zfill(2)}.png'
|
20 |
+
image = Image.open(img_path).convert('RGB')
|
21 |
+
|
22 |
+
if self.transform:
|
23 |
+
image = self.transform(image)
|
24 |
+
|
25 |
+
return image
|
26 |
+
|
27 |
+
data_transform = transforms.Compose([
|
28 |
+
transforms.Resize((224, 224)),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
31 |
+
])
|
32 |
+
|
33 |
+
dataset = RobloxDataset('/content/dataset', transform=data_transform)
|
34 |
+
|
35 |
+
data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
36 |
+
|
37 |
+
model = resnet50(pretrained=True)
|
38 |
+
model.fc = torch.nn.Linear(in_features=2048, out_features=1)
|
39 |
+
|
40 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
41 |
+
model.to(device)
|
42 |
+
|
43 |
+
criterion = torch.nn.BCEWithLogitsLoss()
|
44 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
45 |
+
|
46 |
+
num_epochs = 10
|
47 |
+
|
48 |
+
for epoch in range(num_epochs):
|
49 |
+
for images in data_loader:
|
50 |
+
images = images.to(device)
|
51 |
+
labels = torch.ones((images.size(0), 1)).to(device)
|
52 |
+
|
53 |
+
outputs = model(images)
|
54 |
+
loss = criterion(outputs, labels)
|
55 |
+
|
56 |
+
optimizer.zero_grad()
|
57 |
+
loss.backward()
|
58 |
+
optimizer.step()
|
59 |
+
|
60 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')
|