Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: bn
|
3 |
+
tags:
|
4 |
+
- Bert base
|
5 |
+
- Bengali Bert
|
6 |
+
- Bengali lm
|
7 |
+
- Bangla Base Bert
|
8 |
+
- Bangla Bert language model
|
9 |
+
- Bangla Bert
|
10 |
+
license: MIT
|
11 |
+
datasets:
|
12 |
+
- BanglaLM dataset
|
13 |
+
---
|
14 |
+
# Bangla BERT Base
|
15 |
+
Here we published a pretrained Bangla bert language model as **bert-base-bangla**! which is now available in huggingface model hub.
|
16 |
+
Here we described [bert-base-bangla](https://github.com/Kowsher/bert-base-bangla) which is a pretrained Bangla language model based on mask language modeling described in [BERT](https://arxiv.org/abs/1810.04805) and the GitHub [repository](https://github.com/google-research/bert)
|
17 |
+
## Corpus Details
|
18 |
+
We trained the Bangla bert language model using BanglaLM dataset from kaggle [BanglaLM](https://www.kaggle.com/gakowsher/bangla-language-model-dataset). There is 3 version of dataset which is almost 40GB.
|
19 |
+
After downloading the dataset, we went on the way of mask LM, described here [BERT](https://arxiv.org/abs/1810.04805)
|
20 |
+
```
|
21 |
+
|
22 |
+
**Bangla Base BERT Tokenizer**
|
23 |
+
```py
|
24 |
+
from transformers import AutoTokenizer, AutoModel
|
25 |
+
bnbert_tokenizer = AutoTokenizer.from_pretrained("Kowsher/bert-base-test")
|
26 |
+
text = "খাঁটি সোনার চাইতে খাঁটি আমার দেশের মাটি"
|
27 |
+
bnbert_tokenizer.tokenize(text)
|
28 |
+
# output: ['খাটি', 'সে', '##ানার', 'চাইতে', 'খাটি', 'আমার', 'দেশের', 'মাটি']
|
29 |
+
```
|
30 |
+
**MASK Generation**
|
31 |
+
here, we can use bert base bangla model as for masked language modeling:
|
32 |
+
```py
|
33 |
+
from transformers import BertForMaskedLM, BertTokenizer, pipeline
|
34 |
+
model = BertForMaskedLM.from_pretrained("Kowsher/bert-base-test")
|
35 |
+
tokenizer = BertTokenizer.from_pretrained("Kowsher/bert-base-test")
|
36 |
+
|
37 |
+
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
38 |
+
for pred in nlp(f"আমি বাংলার গান {nlp.tokenizer.mask_token}"):
|
39 |
+
print(pred)
|
40 |
+
# {'sequence': 'আমি বাংলার গান লিখি', 'score': 0.17955434322357178, 'token': 24749, 'token_str': 'লিখি'}
|
41 |
+
|
42 |
+
|
43 |
+
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
44 |
+
for pred in nlp(f"তুই রাজাকার তুই {nlp.tokenizer.mask_token}"):
|
45 |
+
print(pred)
|
46 |
+
# {'sequence': 'তই রাজাকার তই রাজাকার', 'score': 0.9975168704986572, 'token': 13401, 'token_str': 'রাজাকার'}
|
47 |
+
|
48 |
+
|
49 |
+
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
50 |
+
for pred in nlp(f"বাংলা আমার {nlp.tokenizer.mask_token}"):
|
51 |
+
print(pred)
|
52 |
+
# {'sequence': 'বাংলা আমার অহংকার', 'score': 0.5679506063461304, 'token': 19009, 'token_str': 'অহংকার'}
|
53 |
+
```
|
54 |
+
## Author
|
55 |
+
[Kowsher](http://kowsher.org/)
|