Upload folder using huggingface_hub
Browse files- README.md +0 -121
- config.json +35 -0
- task_config.json +1 -1
- training_args.json +2 -2
README.md
CHANGED
|
@@ -24,124 +24,3 @@ from bilingual import bilingual_api as bb
|
|
| 24 |
result = bb.readability_check("Your text here")
|
| 25 |
print(result)
|
| 26 |
```
|
| 27 |
-
|
| 28 |
-
---
|
| 29 |
-
language:
|
| 30 |
-
- bn
|
| 31 |
-
- en
|
| 32 |
-
license: apache-2.0
|
| 33 |
-
tags:
|
| 34 |
-
- bangla
|
| 35 |
-
- bengali
|
| 36 |
-
- english
|
| 37 |
-
- readability
|
| 38 |
-
- classifier
|
| 39 |
-
- text-quality
|
| 40 |
-
- nlp
|
| 41 |
-
- transformers
|
| 42 |
-
datasets:
|
| 43 |
-
- wikipedia
|
| 44 |
-
- custom
|
| 45 |
-
metrics:
|
| 46 |
-
- accuracy
|
| 47 |
-
- f1
|
| 48 |
-
- precision
|
| 49 |
-
- recall
|
| 50 |
-
---
|
| 51 |
-
|
| 52 |
-
# Bangla–English Readability Classifier
|
| 53 |
-
|
| 54 |
-
This model classifies Bangla and English text into readability levels — *simple*, *medium*, or *complex*.
|
| 55 |
-
It is part of the **KothaGPT Bilingual NLP suite**, trained on parallel corpora combining **Bangla Wikipedia**, **news articles**, and **simplified text datasets**.
|
| 56 |
-
|
| 57 |
-
---
|
| 58 |
-
|
| 59 |
-
## 🧠 Model Description
|
| 60 |
-
|
| 61 |
-
- **Model Type:** Text classifier (sequence classification)
|
| 62 |
-
- **Base Architecture:** BERT (Multilingual / IndicBERT variant)
|
| 63 |
-
- **Languages:** Bangla (bn), English (en)
|
| 64 |
-
- **Task:** Readability prediction (3-way classification)
|
| 65 |
-
- **License:** Apache 2.0
|
| 66 |
-
- **Framework:** PyTorch + Hugging Face Transformers
|
| 67 |
-
|
| 68 |
-
---
|
| 69 |
-
|
| 70 |
-
## 🧩 Intended Use
|
| 71 |
-
|
| 72 |
-
- Educational content simplification
|
| 73 |
-
- Readability filtering in datasets
|
| 74 |
-
- Adaptive text generation evaluation
|
| 75 |
-
- Research in Bangla and bilingual readability modeling
|
| 76 |
-
|
| 77 |
-
---
|
| 78 |
-
|
| 79 |
-
## 🧾 Training Data
|
| 80 |
-
|
| 81 |
-
| Source | Description | Size |
|
| 82 |
-
|--------|--------------|------|
|
| 83 |
-
| Bangla Wikipedia | Encyclopedic formal text | 800K sentences |
|
| 84 |
-
| News Articles | Mixed domain readability | 200K sentences |
|
| 85 |
-
| Simplified Text Corpora | Easy Bangla + English parallel samples | 100K sentences |
|
| 86 |
-
|
| 87 |
-
**Labels:**
|
| 88 |
-
- `0`: Simple
|
| 89 |
-
- `1`: Medium
|
| 90 |
-
- `2`: Complex
|
| 91 |
-
|
| 92 |
-
---
|
| 93 |
-
|
| 94 |
-
## ⚙️ Training Procedure
|
| 95 |
-
|
| 96 |
-
**Preprocessing:**
|
| 97 |
-
- Unicode normalization
|
| 98 |
-
- Sentence length filtering (5–200 tokens)
|
| 99 |
-
- Bilingual tokenization using SentencePiece
|
| 100 |
-
- Balanced sampling across readability levels
|
| 101 |
-
|
| 102 |
-
**Hyperparameters:**
|
| 103 |
-
- Epochs: 4
|
| 104 |
-
- Batch size: 16
|
| 105 |
-
- Learning rate: 3e-5
|
| 106 |
-
- Optimizer: AdamW
|
| 107 |
-
- Sequence length: 256
|
| 108 |
-
- Dropout: 0.1
|
| 109 |
-
- Mixed precision: FP16
|
| 110 |
-
|
| 111 |
-
---
|
| 112 |
-
|
| 113 |
-
## 🧪 Evaluation
|
| 114 |
-
|
| 115 |
-
| Metric | Dev | Test |
|
| 116 |
-
|--------|-----|------|
|
| 117 |
-
| Accuracy | 0.88 | 0.86 |
|
| 118 |
-
| F1 (macro) | 0.87 | 0.85 |
|
| 119 |
-
| Precision | 0.88 | 0.86 |
|
| 120 |
-
| Recall | 0.87 | 0.84 |
|
| 121 |
-
|
| 122 |
-
**Confusion matrix trends:**
|
| 123 |
-
- Some overlap between *medium* and *complex* categories.
|
| 124 |
-
- Simpler texts (Wikipedia Simple or translated corpora) perform best.
|
| 125 |
-
|
| 126 |
-
---
|
| 127 |
-
|
| 128 |
-
## 🚀 Usage Example
|
| 129 |
-
|
| 130 |
-
```python
|
| 131 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 132 |
-
import torch
|
| 133 |
-
|
| 134 |
-
model_id = "KothaGPT/bn-en-readability-classifier"
|
| 135 |
-
|
| 136 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 137 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 138 |
-
|
| 139 |
-
text = "বাংলাদেশের রাজধানী ঢাকা শহরটি দেশের অর্থনৈতিক কেন্দ্র।"
|
| 140 |
-
|
| 141 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 142 |
-
with torch.no_grad():
|
| 143 |
-
logits = model(**inputs).logits
|
| 144 |
-
pred = torch.argmax(logits, dim=-1).item()
|
| 145 |
-
|
| 146 |
-
labels = ["simple", "medium", "complex"]
|
| 147 |
-
print(f"Predicted readability: {labels[pred]}")
|
|
|
|
| 24 |
result = bb.readability_check("Your text here")
|
| 25 |
print(result)
|
| 26 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "bert",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"task_type": "text-classification",
|
| 7 |
+
"num_labels": 4,
|
| 8 |
+
"label2id": {
|
| 9 |
+
"6-8": 0,
|
| 10 |
+
"9-10": 1,
|
| 11 |
+
"11-12": 2,
|
| 12 |
+
"general": 3
|
| 13 |
+
},
|
| 14 |
+
"id2label": {
|
| 15 |
+
"0": "6-8",
|
| 16 |
+
"1": "9-10",
|
| 17 |
+
"2": "11-12",
|
| 18 |
+
"3": "general"
|
| 19 |
+
},
|
| 20 |
+
"hidden_size": 768,
|
| 21 |
+
"num_attention_heads": 12,
|
| 22 |
+
"num_hidden_layers": 12,
|
| 23 |
+
"intermediate_size": 3072,
|
| 24 |
+
"hidden_act": "gelu",
|
| 25 |
+
"hidden_dropout_prob": 0.1,
|
| 26 |
+
"attention_probs_dropout_prob": 0.1,
|
| 27 |
+
"max_position_embeddings": 512,
|
| 28 |
+
"vocab_size": 30522,
|
| 29 |
+
"type_vocab_size": 2,
|
| 30 |
+
"initializer_range": 0.02,
|
| 31 |
+
"layer_norm_eps": 1e-12,
|
| 32 |
+
"pad_token_id": 0,
|
| 33 |
+
"problem_type": "single_label_classification",
|
| 34 |
+
"transformers_version": "4.57.6"
|
| 35 |
+
}
|
task_config.json
CHANGED
|
@@ -20,4 +20,4 @@
|
|
| 20 |
},
|
| 21 |
"description": "Age-appropriate readability classification",
|
| 22 |
"status": "placeholder"
|
| 23 |
-
}
|
|
|
|
| 20 |
},
|
| 21 |
"description": "Age-appropriate readability classification",
|
| 22 |
"status": "placeholder"
|
| 23 |
+
}
|
training_args.json
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"model_name": "KothaGPT/bn-en-readability-classifier",
|
| 3 |
"architecture": "BertForSequenceClassification",
|
| 4 |
"base_model": "ai4bharat/indic-bert",
|
| 5 |
-
"num_labels":
|
| 6 |
"epochs": 4,
|
| 7 |
"batch_size": 16,
|
| 8 |
"learning_rate": 3e-5,
|
|
@@ -21,4 +21,4 @@
|
|
| 21 |
"evaluation_strategy": "epoch",
|
| 22 |
"logging_strategy": "steps",
|
| 23 |
"logging_steps": 100
|
| 24 |
-
}
|
|
|
|
| 2 |
"model_name": "KothaGPT/bn-en-readability-classifier",
|
| 3 |
"architecture": "BertForSequenceClassification",
|
| 4 |
"base_model": "ai4bharat/indic-bert",
|
| 5 |
+
"num_labels": 4,
|
| 6 |
"epochs": 4,
|
| 7 |
"batch_size": 16,
|
| 8 |
"learning_rate": 3e-5,
|
|
|
|
| 21 |
"evaluation_strategy": "epoch",
|
| 22 |
"logging_strategy": "steps",
|
| 23 |
"logging_steps": 100
|
| 24 |
+
}
|