Koke_Cacao
commited on
Commit
·
0974835
1
Parent(s):
5b08d3b
:sparkles: add models
Browse files- .gitattributes +35 -0
- .gitignore +0 -1
- model_index.json +25 -0
- scheduler/scheduler_config.json +19 -0
- scripts/README.md +2 -2
- scripts/attention.py +13 -11
- scripts/models.py +150 -526
- scripts/pipeline_mvdream.py +19 -3
- scripts/util.py +68 -30
- text_encoder/config.json +25 -0
- text_encoder/pytorch_model.bin +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +30 -0
- tokenizer/tokenizer_config.json +30 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +4 -0
- unet/diffusion_pytorch_model.bin +3 -0
- vae/config.json +31 -0
- vae/diffusion_pytorch_model.bin +3 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
*.pt
|
2 |
*.yaml
|
3 |
-
converted
|
4 |
__pycache__
|
5 |
*.png
|
|
|
1 |
*.pt
|
2 |
*.yaml
|
|
|
3 |
__pycache__
|
4 |
*.png
|
model_index.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "MVDreamStableDiffusionPipeline",
|
3 |
+
"_diffusers_version": "0.21.4",
|
4 |
+
"requires_safety_checker": false,
|
5 |
+
"scheduler": [
|
6 |
+
"diffusers",
|
7 |
+
"DDIMScheduler"
|
8 |
+
],
|
9 |
+
"text_encoder": [
|
10 |
+
"transformers",
|
11 |
+
"CLIPTextModel"
|
12 |
+
],
|
13 |
+
"tokenizer": [
|
14 |
+
"transformers",
|
15 |
+
"CLIPTokenizer"
|
16 |
+
],
|
17 |
+
"unet": [
|
18 |
+
"models",
|
19 |
+
"MultiViewUNetWrapperModel"
|
20 |
+
],
|
21 |
+
"vae": [
|
22 |
+
"diffusers",
|
23 |
+
"AutoencoderKL"
|
24 |
+
]
|
25 |
+
}
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.21.4",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"dynamic_thresholding_ratio": 0.995,
|
10 |
+
"num_train_timesteps": 1000,
|
11 |
+
"prediction_type": "epsilon",
|
12 |
+
"rescale_betas_zero_snr": false,
|
13 |
+
"sample_max_value": 1.0,
|
14 |
+
"set_alpha_to_one": false,
|
15 |
+
"steps_offset": 1,
|
16 |
+
"thresholding": false,
|
17 |
+
"timestep_spacing": "leading",
|
18 |
+
"trained_betas": null
|
19 |
+
}
|
scripts/README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# Convert original weights to diffusers
|
2 |
|
3 |
-
Download original MVDream checkpoint
|
4 |
|
5 |
```bash
|
6 |
# for sd-v1.5 (recommended for production)
|
@@ -14,5 +14,5 @@ wget https://raw.githubusercontent.com/bytedance/MVDream/main/mvdream/configs/sd
|
|
14 |
|
15 |
Hugging Face diffusers weights are converted by script:
|
16 |
```bash
|
17 |
-
python ./scripts/convert_mvdream_to_diffusers.py --checkpoint_path ./sd-v1.5-4view.pt --dump_path
|
18 |
```
|
|
|
1 |
# Convert original weights to diffusers
|
2 |
|
3 |
+
Download original MVDream checkpoint through one of the following sources:
|
4 |
|
5 |
```bash
|
6 |
# for sd-v1.5 (recommended for production)
|
|
|
14 |
|
15 |
Hugging Face diffusers weights are converted by script:
|
16 |
```bash
|
17 |
+
python ./scripts/convert_mvdream_to_diffusers.py --checkpoint_path ./sd-v1.5-4view.pt --dump_path . --original_config_file ./sd-v1.yaml
|
18 |
```
|
scripts/attention.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
-
|
|
|
2 |
import math
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
|
|
|
|
5 |
from torch import nn, einsum
|
|
|
6 |
from einops import rearrange, repeat
|
7 |
from typing import Optional, Any
|
8 |
-
|
9 |
from util import checkpoint
|
10 |
|
11 |
|
@@ -20,16 +23,13 @@ except:
|
|
20 |
import os
|
21 |
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
22 |
|
23 |
-
def exists(val):
|
24 |
-
return val is not None
|
25 |
-
|
26 |
|
27 |
def uniq(arr):
|
28 |
return{el: True for el in arr}.keys()
|
29 |
|
30 |
|
31 |
def default(val, d):
|
32 |
-
if
|
33 |
return val
|
34 |
return d() if isfunction(d) else d
|
35 |
|
@@ -172,7 +172,7 @@ class CrossAttention(nn.Module):
|
|
172 |
|
173 |
# force cast to fp32 to avoid overflowing
|
174 |
if _ATTN_PRECISION =="fp32":
|
175 |
-
with
|
176 |
q, k = q.float(), k.float()
|
177 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
178 |
else:
|
@@ -180,7 +180,7 @@ class CrossAttention(nn.Module):
|
|
180 |
|
181 |
del q, k
|
182 |
|
183 |
-
if
|
184 |
mask = rearrange(mask, 'b ... -> b (...)')
|
185 |
max_neg_value = -torch.finfo(sim.dtype).max
|
186 |
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
@@ -232,7 +232,7 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|
232 |
# actually compute the attention, what we cannot get enough of
|
233 |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
234 |
|
235 |
-
if
|
236 |
raise NotImplementedError
|
237 |
out = (
|
238 |
out.unsqueeze(0)
|
@@ -289,7 +289,8 @@ class SpatialTransformer(nn.Module):
|
|
289 |
disable_self_attn=False, use_linear=False,
|
290 |
use_checkpoint=True):
|
291 |
super().__init__()
|
292 |
-
|
|
|
293 |
context_dim = [context_dim]
|
294 |
self.in_channels = in_channels
|
295 |
inner_dim = n_heads * d_head
|
@@ -361,7 +362,8 @@ class SpatialTransformer3D(nn.Module):
|
|
361 |
disable_self_attn=False, use_linear=False,
|
362 |
use_checkpoint=True):
|
363 |
super().__init__()
|
364 |
-
|
|
|
365 |
context_dim = [context_dim]
|
366 |
self.in_channels = in_channels
|
367 |
inner_dim = n_heads * d_head
|
|
|
1 |
+
# obtained and modified from https://github.com/bytedance/MVDream
|
2 |
+
|
3 |
import math
|
4 |
import torch
|
5 |
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from inspect import isfunction
|
8 |
from torch import nn, einsum
|
9 |
+
from torch.amp.autocast_mode import autocast
|
10 |
from einops import rearrange, repeat
|
11 |
from typing import Optional, Any
|
|
|
12 |
from util import checkpoint
|
13 |
|
14 |
|
|
|
23 |
import os
|
24 |
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
25 |
|
|
|
|
|
|
|
26 |
|
27 |
def uniq(arr):
|
28 |
return{el: True for el in arr}.keys()
|
29 |
|
30 |
|
31 |
def default(val, d):
|
32 |
+
if val is not None:
|
33 |
return val
|
34 |
return d() if isfunction(d) else d
|
35 |
|
|
|
172 |
|
173 |
# force cast to fp32 to avoid overflowing
|
174 |
if _ATTN_PRECISION =="fp32":
|
175 |
+
with autocast(enabled=False, device_type = 'cuda'):
|
176 |
q, k = q.float(), k.float()
|
177 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
178 |
else:
|
|
|
180 |
|
181 |
del q, k
|
182 |
|
183 |
+
if mask is not None:
|
184 |
mask = rearrange(mask, 'b ... -> b (...)')
|
185 |
max_neg_value = -torch.finfo(sim.dtype).max
|
186 |
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
|
|
232 |
# actually compute the attention, what we cannot get enough of
|
233 |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
234 |
|
235 |
+
if mask is not None:
|
236 |
raise NotImplementedError
|
237 |
out = (
|
238 |
out.unsqueeze(0)
|
|
|
289 |
disable_self_attn=False, use_linear=False,
|
290 |
use_checkpoint=True):
|
291 |
super().__init__()
|
292 |
+
assert context_dim is not None
|
293 |
+
if not isinstance(context_dim, list):
|
294 |
context_dim = [context_dim]
|
295 |
self.in_channels = in_channels
|
296 |
inner_dim = n_heads * d_head
|
|
|
362 |
disable_self_attn=False, use_linear=False,
|
363 |
use_checkpoint=True):
|
364 |
super().__init__()
|
365 |
+
assert context_dim is not None
|
366 |
+
if not isinstance(context_dim, list):
|
367 |
context_dim = [context_dim]
|
368 |
self.in_channels = in_channels
|
369 |
inner_dim = n_heads * d_head
|
scripts/models.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
|
2 |
-
import math
|
3 |
-
from typing import Any, Mapping
|
4 |
|
|
|
5 |
import numpy as np
|
6 |
import torch as th
|
7 |
import torch.nn as nn
|
8 |
import torch.nn.functional as F
|
9 |
|
|
|
10 |
from util import (
|
11 |
checkpoint,
|
12 |
conv_nd,
|
@@ -16,58 +16,32 @@ from util import (
|
|
16 |
normalization,
|
17 |
timestep_embedding,
|
18 |
)
|
19 |
-
from attention import SpatialTransformer, SpatialTransformer3D
|
20 |
-
|
21 |
-
|
22 |
from diffusers.configuration_utils import ConfigMixin
|
23 |
from diffusers.models.modeling_utils import ModelMixin
|
|
|
|
|
|
|
|
|
24 |
class MultiViewUNetWrapperModel(ModelMixin, ConfigMixin):
|
|
|
25 |
def __init__(self, *args, **kwargs):
|
26 |
super().__init__()
|
27 |
self.unet: MultiViewUNetModel = MultiViewUNetModel(*args, **kwargs)
|
28 |
-
|
29 |
def forward(self, *args, **kwargs):
|
30 |
return self.unet(*args, **kwargs)
|
31 |
|
|
|
32 |
# dummy replace
|
33 |
def convert_module_to_f16(x):
|
34 |
pass
|
35 |
|
|
|
36 |
def convert_module_to_f32(x):
|
37 |
pass
|
38 |
|
39 |
|
40 |
-
## go
|
41 |
-
class AttentionPool2d(nn.Module):
|
42 |
-
"""
|
43 |
-
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
44 |
-
"""
|
45 |
-
|
46 |
-
def __init__(
|
47 |
-
self,
|
48 |
-
spacial_dim: int,
|
49 |
-
embed_dim: int,
|
50 |
-
num_heads_channels: int,
|
51 |
-
output_dim: int = None,
|
52 |
-
):
|
53 |
-
super().__init__()
|
54 |
-
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
55 |
-
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
56 |
-
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
57 |
-
self.num_heads = embed_dim // num_heads_channels
|
58 |
-
self.attention = QKVAttention(self.num_heads)
|
59 |
-
|
60 |
-
def forward(self, x):
|
61 |
-
b, c, *_spatial = x.shape
|
62 |
-
x = x.reshape(b, c, -1) # NC(HW)
|
63 |
-
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
64 |
-
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
65 |
-
x = self.qkv_proj(x)
|
66 |
-
x = self.attention(x)
|
67 |
-
x = self.c_proj(x)
|
68 |
-
return x[:, :, 0]
|
69 |
-
|
70 |
-
|
71 |
class TimestepBlock(nn.Module):
|
72 |
"""
|
73 |
Any module where forward() takes timestep embeddings as a second argument.
|
@@ -108,39 +82,35 @@ class Upsample(nn.Module):
|
|
108 |
upsampling occurs in the inner-two dimensions.
|
109 |
"""
|
110 |
|
111 |
-
def __init__(self,
|
|
|
|
|
|
|
|
|
|
|
112 |
super().__init__()
|
113 |
self.channels = channels
|
114 |
self.out_channels = out_channels or channels
|
115 |
self.use_conv = use_conv
|
116 |
self.dims = dims
|
117 |
if use_conv:
|
118 |
-
self.conv = conv_nd(dims,
|
|
|
|
|
|
|
|
|
119 |
|
120 |
def forward(self, x):
|
121 |
assert x.shape[1] == self.channels
|
122 |
if self.dims == 3:
|
123 |
-
x = F.interpolate(
|
124 |
-
|
125 |
-
)
|
126 |
else:
|
127 |
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
128 |
if self.use_conv:
|
129 |
x = self.conv(x)
|
130 |
return x
|
131 |
|
132 |
-
class TransposedUpsample(nn.Module):
|
133 |
-
'Learned 2x upsampling without padding'
|
134 |
-
def __init__(self, channels, out_channels=None, ks=5):
|
135 |
-
super().__init__()
|
136 |
-
self.channels = channels
|
137 |
-
self.out_channels = out_channels or channels
|
138 |
-
|
139 |
-
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
140 |
-
|
141 |
-
def forward(self,x):
|
142 |
-
return self.up(x)
|
143 |
-
|
144 |
|
145 |
class Downsample(nn.Module):
|
146 |
"""
|
@@ -151,7 +121,12 @@ class Downsample(nn.Module):
|
|
151 |
downsampling occurs in the inner-two dimensions.
|
152 |
"""
|
153 |
|
154 |
-
def __init__(self,
|
|
|
|
|
|
|
|
|
|
|
155 |
super().__init__()
|
156 |
self.channels = channels
|
157 |
self.out_channels = out_channels or channels
|
@@ -159,9 +134,12 @@ class Downsample(nn.Module):
|
|
159 |
self.dims = dims
|
160 |
stride = 2 if dims != 3 else (1, 2, 2)
|
161 |
if use_conv:
|
162 |
-
self.op = conv_nd(
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
165 |
else:
|
166 |
assert self.channels == self.out_channels
|
167 |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
@@ -230,7 +208,8 @@ class ResBlock(TimestepBlock):
|
|
230 |
nn.SiLU(),
|
231 |
linear(
|
232 |
emb_channels,
|
233 |
-
2 * self.out_channels
|
|
|
234 |
),
|
235 |
)
|
236 |
self.out_layers = nn.Sequential(
|
@@ -238,18 +217,24 @@ class ResBlock(TimestepBlock):
|
|
238 |
nn.SiLU(),
|
239 |
nn.Dropout(p=dropout),
|
240 |
zero_module(
|
241 |
-
conv_nd(dims,
|
242 |
-
|
|
|
|
|
|
|
243 |
)
|
244 |
|
245 |
if self.out_channels == channels:
|
246 |
self.skip_connection = nn.Identity()
|
247 |
elif use_conv:
|
248 |
-
self.skip_connection = conv_nd(
|
249 |
-
|
250 |
-
|
|
|
|
|
251 |
else:
|
252 |
-
self.skip_connection = conv_nd(dims, channels, self.out_channels,
|
|
|
253 |
|
254 |
def forward(self, x, emb):
|
255 |
"""
|
@@ -258,10 +243,8 @@ class ResBlock(TimestepBlock):
|
|
258 |
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
259 |
:return: an [N x C x ...] Tensor of outputs.
|
260 |
"""
|
261 |
-
return checkpoint(
|
262 |
-
|
263 |
-
)
|
264 |
-
|
265 |
|
266 |
def _forward(self, x, emb):
|
267 |
if self.updown:
|
@@ -323,7 +306,9 @@ class AttentionBlock(nn.Module):
|
|
323 |
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
324 |
|
325 |
def forward(self, x):
|
326 |
-
return checkpoint(
|
|
|
|
|
327 |
#return pt_checkpoint(self._forward, x) # pytorch
|
328 |
|
329 |
def _forward(self, x):
|
@@ -351,7 +336,7 @@ def count_flops_attn(model, _x, y):
|
|
351 |
# We perform two matmuls with the same number of ops.
|
352 |
# The first computes the weight matrix, the second computes
|
353 |
# the combination of the value vectors.
|
354 |
-
matmul_ops = 2 * b * (num_spatial
|
355 |
model.total_ops += th.DoubleTensor([matmul_ops])
|
356 |
|
357 |
|
@@ -373,11 +358,12 @@ class QKVAttentionLegacy(nn.Module):
|
|
373 |
bs, width, length = qkv.shape
|
374 |
assert width % (3 * self.n_heads) == 0
|
375 |
ch = width // (3 * self.n_heads)
|
376 |
-
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch,
|
|
|
377 |
scale = 1 / math.sqrt(math.sqrt(ch))
|
378 |
weight = th.einsum(
|
379 |
-
"bct,bcs->bts", q * scale,
|
380 |
-
|
381 |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
382 |
a = th.einsum("bts,bcs->bct", weight, v)
|
383 |
return a.reshape(bs, -1, length)
|
@@ -413,7 +399,8 @@ class QKVAttention(nn.Module):
|
|
413 |
(k * scale).view(bs * self.n_heads, ch, length),
|
414 |
) # More stable with f16 than dividing afterwards
|
415 |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
416 |
-
a = th.einsum("bts,bcs->bct", weight,
|
|
|
417 |
return a.reshape(bs, -1, length)
|
418 |
|
419 |
@staticmethod
|
@@ -422,6 +409,7 @@ class QKVAttention(nn.Module):
|
|
422 |
|
423 |
|
424 |
class Timestep(nn.Module):
|
|
|
425 |
def __init__(self, dim):
|
426 |
super().__init__()
|
427 |
self.dim = dim
|
@@ -430,395 +418,6 @@ class Timestep(nn.Module):
|
|
430 |
return timestep_embedding(t, self.dim)
|
431 |
|
432 |
|
433 |
-
class UNetModel(nn.Module):
|
434 |
-
"""
|
435 |
-
The full UNet model with attention and timestep embedding.
|
436 |
-
:param in_channels: channels in the input Tensor.
|
437 |
-
:param model_channels: base channel count for the model.
|
438 |
-
:param out_channels: channels in the output Tensor.
|
439 |
-
:param num_res_blocks: number of residual blocks per downsample.
|
440 |
-
:param attention_resolutions: a collection of downsample rates at which
|
441 |
-
attention will take place. May be a set, list, or tuple.
|
442 |
-
For example, if this contains 4, then at 4x downsampling, attention
|
443 |
-
will be used.
|
444 |
-
:param dropout: the dropout probability.
|
445 |
-
:param channel_mult: channel multiplier for each level of the UNet.
|
446 |
-
:param conv_resample: if True, use learned convolutions for upsampling and
|
447 |
-
downsampling.
|
448 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
449 |
-
:param num_classes: if specified (as an int), then this model will be
|
450 |
-
class-conditional with `num_classes` classes.
|
451 |
-
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
452 |
-
:param num_heads: the number of attention heads in each attention layer.
|
453 |
-
:param num_heads_channels: if specified, ignore num_heads and instead use
|
454 |
-
a fixed channel width per attention head.
|
455 |
-
:param num_heads_upsample: works with num_heads to set a different number
|
456 |
-
of heads for upsampling. Deprecated.
|
457 |
-
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
458 |
-
:param resblock_updown: use residual blocks for up/downsampling.
|
459 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
460 |
-
increased efficiency.
|
461 |
-
"""
|
462 |
-
|
463 |
-
def __init__(
|
464 |
-
self,
|
465 |
-
image_size,
|
466 |
-
in_channels,
|
467 |
-
model_channels,
|
468 |
-
out_channels,
|
469 |
-
num_res_blocks,
|
470 |
-
attention_resolutions,
|
471 |
-
dropout=0,
|
472 |
-
channel_mult=(1, 2, 4, 8),
|
473 |
-
conv_resample=True,
|
474 |
-
dims=2,
|
475 |
-
num_classes=None,
|
476 |
-
use_checkpoint=False,
|
477 |
-
use_fp16=False,
|
478 |
-
use_bf16=False,
|
479 |
-
num_heads=-1,
|
480 |
-
num_head_channels=-1,
|
481 |
-
num_heads_upsample=-1,
|
482 |
-
use_scale_shift_norm=False,
|
483 |
-
resblock_updown=False,
|
484 |
-
use_new_attention_order=False,
|
485 |
-
use_spatial_transformer=False, # custom transformer support
|
486 |
-
transformer_depth=1, # custom transformer support
|
487 |
-
context_dim=None, # custom transformer support
|
488 |
-
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
489 |
-
legacy=True,
|
490 |
-
disable_self_attentions=None,
|
491 |
-
num_attention_blocks=None,
|
492 |
-
disable_middle_self_attn=False,
|
493 |
-
use_linear_in_transformer=False,
|
494 |
-
adm_in_channels=None,
|
495 |
-
):
|
496 |
-
super().__init__()
|
497 |
-
if use_spatial_transformer:
|
498 |
-
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
499 |
-
|
500 |
-
if context_dim is not None:
|
501 |
-
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
502 |
-
from omegaconf.listconfig import ListConfig
|
503 |
-
if type(context_dim) == ListConfig:
|
504 |
-
context_dim = list(context_dim)
|
505 |
-
|
506 |
-
if num_heads_upsample == -1:
|
507 |
-
num_heads_upsample = num_heads
|
508 |
-
|
509 |
-
if num_heads == -1:
|
510 |
-
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
511 |
-
|
512 |
-
if num_head_channels == -1:
|
513 |
-
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
514 |
-
|
515 |
-
self.image_size = image_size
|
516 |
-
self.in_channels = in_channels
|
517 |
-
self.model_channels = model_channels
|
518 |
-
self.out_channels = out_channels
|
519 |
-
if isinstance(num_res_blocks, int):
|
520 |
-
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
521 |
-
else:
|
522 |
-
if len(num_res_blocks) != len(channel_mult):
|
523 |
-
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
524 |
-
"as a list/tuple (per-level) with the same length as channel_mult")
|
525 |
-
self.num_res_blocks = num_res_blocks
|
526 |
-
if disable_self_attentions is not None:
|
527 |
-
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
528 |
-
assert len(disable_self_attentions) == len(channel_mult)
|
529 |
-
if num_attention_blocks is not None:
|
530 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
531 |
-
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
532 |
-
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
533 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
534 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
535 |
-
f"attention will still not be set.")
|
536 |
-
|
537 |
-
self.attention_resolutions = attention_resolutions
|
538 |
-
self.dropout = dropout
|
539 |
-
self.channel_mult = channel_mult
|
540 |
-
self.conv_resample = conv_resample
|
541 |
-
self.num_classes = num_classes
|
542 |
-
self.use_checkpoint = use_checkpoint
|
543 |
-
self.dtype = th.float16 if use_fp16 else th.float32
|
544 |
-
self.dtype = th.bfloat16 if use_bf16 else self.dtype
|
545 |
-
self.num_heads = num_heads
|
546 |
-
self.num_head_channels = num_head_channels
|
547 |
-
self.num_heads_upsample = num_heads_upsample
|
548 |
-
self.predict_codebook_ids = n_embed is not None
|
549 |
-
|
550 |
-
time_embed_dim = model_channels * 4
|
551 |
-
self.time_embed = nn.Sequential(
|
552 |
-
linear(model_channels, time_embed_dim),
|
553 |
-
nn.SiLU(),
|
554 |
-
linear(time_embed_dim, time_embed_dim),
|
555 |
-
)
|
556 |
-
|
557 |
-
if self.num_classes is not None:
|
558 |
-
if isinstance(self.num_classes, int):
|
559 |
-
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
560 |
-
elif self.num_classes == "continuous":
|
561 |
-
print("setting up linear c_adm embedding layer")
|
562 |
-
self.label_emb = nn.Linear(1, time_embed_dim)
|
563 |
-
elif self.num_classes == "sequential":
|
564 |
-
assert adm_in_channels is not None
|
565 |
-
self.label_emb = nn.Sequential(
|
566 |
-
nn.Sequential(
|
567 |
-
linear(adm_in_channels, time_embed_dim),
|
568 |
-
nn.SiLU(),
|
569 |
-
linear(time_embed_dim, time_embed_dim),
|
570 |
-
)
|
571 |
-
)
|
572 |
-
else:
|
573 |
-
raise ValueError()
|
574 |
-
|
575 |
-
self.input_blocks = nn.ModuleList(
|
576 |
-
[
|
577 |
-
TimestepEmbedSequential(
|
578 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
579 |
-
)
|
580 |
-
]
|
581 |
-
)
|
582 |
-
self._feature_size = model_channels
|
583 |
-
input_block_chans = [model_channels]
|
584 |
-
ch = model_channels
|
585 |
-
ds = 1
|
586 |
-
for level, mult in enumerate(channel_mult):
|
587 |
-
for nr in range(self.num_res_blocks[level]):
|
588 |
-
layers = [
|
589 |
-
ResBlock(
|
590 |
-
ch,
|
591 |
-
time_embed_dim,
|
592 |
-
dropout,
|
593 |
-
out_channels=mult * model_channels,
|
594 |
-
dims=dims,
|
595 |
-
use_checkpoint=use_checkpoint,
|
596 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
597 |
-
)
|
598 |
-
]
|
599 |
-
ch = mult * model_channels
|
600 |
-
if ds in attention_resolutions:
|
601 |
-
if num_head_channels == -1:
|
602 |
-
dim_head = ch // num_heads
|
603 |
-
else:
|
604 |
-
num_heads = ch // num_head_channels
|
605 |
-
dim_head = num_head_channels
|
606 |
-
if legacy:
|
607 |
-
#num_heads = 1
|
608 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
609 |
-
if exists(disable_self_attentions):
|
610 |
-
disabled_sa = disable_self_attentions[level]
|
611 |
-
else:
|
612 |
-
disabled_sa = False
|
613 |
-
|
614 |
-
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
615 |
-
layers.append(
|
616 |
-
AttentionBlock(
|
617 |
-
ch,
|
618 |
-
use_checkpoint=use_checkpoint,
|
619 |
-
num_heads=num_heads,
|
620 |
-
num_head_channels=dim_head,
|
621 |
-
use_new_attention_order=use_new_attention_order,
|
622 |
-
) if not use_spatial_transformer else SpatialTransformer(
|
623 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
624 |
-
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
625 |
-
use_checkpoint=use_checkpoint
|
626 |
-
)
|
627 |
-
)
|
628 |
-
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
629 |
-
self._feature_size += ch
|
630 |
-
input_block_chans.append(ch)
|
631 |
-
if level != len(channel_mult) - 1:
|
632 |
-
out_ch = ch
|
633 |
-
self.input_blocks.append(
|
634 |
-
TimestepEmbedSequential(
|
635 |
-
ResBlock(
|
636 |
-
ch,
|
637 |
-
time_embed_dim,
|
638 |
-
dropout,
|
639 |
-
out_channels=out_ch,
|
640 |
-
dims=dims,
|
641 |
-
use_checkpoint=use_checkpoint,
|
642 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
643 |
-
down=True,
|
644 |
-
)
|
645 |
-
if resblock_updown
|
646 |
-
else Downsample(
|
647 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
648 |
-
)
|
649 |
-
)
|
650 |
-
)
|
651 |
-
ch = out_ch
|
652 |
-
input_block_chans.append(ch)
|
653 |
-
ds *= 2
|
654 |
-
self._feature_size += ch
|
655 |
-
|
656 |
-
if num_head_channels == -1:
|
657 |
-
dim_head = ch // num_heads
|
658 |
-
else:
|
659 |
-
num_heads = ch // num_head_channels
|
660 |
-
dim_head = num_head_channels
|
661 |
-
if legacy:
|
662 |
-
#num_heads = 1
|
663 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
664 |
-
self.middle_block = TimestepEmbedSequential(
|
665 |
-
ResBlock(
|
666 |
-
ch,
|
667 |
-
time_embed_dim,
|
668 |
-
dropout,
|
669 |
-
dims=dims,
|
670 |
-
use_checkpoint=use_checkpoint,
|
671 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
672 |
-
),
|
673 |
-
AttentionBlock(
|
674 |
-
ch,
|
675 |
-
use_checkpoint=use_checkpoint,
|
676 |
-
num_heads=num_heads,
|
677 |
-
num_head_channels=dim_head,
|
678 |
-
use_new_attention_order=use_new_attention_order,
|
679 |
-
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
680 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
681 |
-
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
682 |
-
use_checkpoint=use_checkpoint
|
683 |
-
),
|
684 |
-
ResBlock(
|
685 |
-
ch,
|
686 |
-
time_embed_dim,
|
687 |
-
dropout,
|
688 |
-
dims=dims,
|
689 |
-
use_checkpoint=use_checkpoint,
|
690 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
691 |
-
),
|
692 |
-
)
|
693 |
-
self._feature_size += ch
|
694 |
-
|
695 |
-
self.output_blocks = nn.ModuleList([])
|
696 |
-
for level, mult in list(enumerate(channel_mult))[::-1]:
|
697 |
-
for i in range(self.num_res_blocks[level] + 1):
|
698 |
-
ich = input_block_chans.pop()
|
699 |
-
layers = [
|
700 |
-
ResBlock(
|
701 |
-
ch + ich,
|
702 |
-
time_embed_dim,
|
703 |
-
dropout,
|
704 |
-
out_channels=model_channels * mult,
|
705 |
-
dims=dims,
|
706 |
-
use_checkpoint=use_checkpoint,
|
707 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
708 |
-
)
|
709 |
-
]
|
710 |
-
ch = model_channels * mult
|
711 |
-
if ds in attention_resolutions:
|
712 |
-
if num_head_channels == -1:
|
713 |
-
dim_head = ch // num_heads
|
714 |
-
else:
|
715 |
-
num_heads = ch // num_head_channels
|
716 |
-
dim_head = num_head_channels
|
717 |
-
if legacy:
|
718 |
-
#num_heads = 1
|
719 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
720 |
-
if exists(disable_self_attentions):
|
721 |
-
disabled_sa = disable_self_attentions[level]
|
722 |
-
else:
|
723 |
-
disabled_sa = False
|
724 |
-
|
725 |
-
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
726 |
-
layers.append(
|
727 |
-
AttentionBlock(
|
728 |
-
ch,
|
729 |
-
use_checkpoint=use_checkpoint,
|
730 |
-
num_heads=num_heads_upsample,
|
731 |
-
num_head_channels=dim_head,
|
732 |
-
use_new_attention_order=use_new_attention_order,
|
733 |
-
) if not use_spatial_transformer else SpatialTransformer(
|
734 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
735 |
-
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
736 |
-
use_checkpoint=use_checkpoint
|
737 |
-
)
|
738 |
-
)
|
739 |
-
if level and i == self.num_res_blocks[level]:
|
740 |
-
out_ch = ch
|
741 |
-
layers.append(
|
742 |
-
ResBlock(
|
743 |
-
ch,
|
744 |
-
time_embed_dim,
|
745 |
-
dropout,
|
746 |
-
out_channels=out_ch,
|
747 |
-
dims=dims,
|
748 |
-
use_checkpoint=use_checkpoint,
|
749 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
750 |
-
up=True,
|
751 |
-
)
|
752 |
-
if resblock_updown
|
753 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
754 |
-
)
|
755 |
-
ds //= 2
|
756 |
-
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
757 |
-
self._feature_size += ch
|
758 |
-
|
759 |
-
self.out = nn.Sequential(
|
760 |
-
normalization(ch),
|
761 |
-
nn.SiLU(),
|
762 |
-
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
763 |
-
)
|
764 |
-
if self.predict_codebook_ids:
|
765 |
-
self.id_predictor = nn.Sequential(
|
766 |
-
normalization(ch),
|
767 |
-
conv_nd(dims, model_channels, n_embed, 1),
|
768 |
-
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
769 |
-
)
|
770 |
-
|
771 |
-
def convert_to_fp16(self):
|
772 |
-
"""
|
773 |
-
Convert the torso of the model to float16.
|
774 |
-
"""
|
775 |
-
self.input_blocks.apply(convert_module_to_f16)
|
776 |
-
self.middle_block.apply(convert_module_to_f16)
|
777 |
-
self.output_blocks.apply(convert_module_to_f16)
|
778 |
-
|
779 |
-
def convert_to_fp32(self):
|
780 |
-
"""
|
781 |
-
Convert the torso of the model to float32.
|
782 |
-
"""
|
783 |
-
self.input_blocks.apply(convert_module_to_f32)
|
784 |
-
self.middle_block.apply(convert_module_to_f32)
|
785 |
-
self.output_blocks.apply(convert_module_to_f32)
|
786 |
-
|
787 |
-
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
788 |
-
"""
|
789 |
-
Apply the model to an input batch.
|
790 |
-
:param x: an [N x C x ...] Tensor of inputs.
|
791 |
-
:param timesteps: a 1-D batch of timesteps.
|
792 |
-
:param context: conditioning plugged in via crossattn
|
793 |
-
:param y: an [N] Tensor of labels, if class-conditional.
|
794 |
-
:return: an [N x C x ...] Tensor of outputs.
|
795 |
-
"""
|
796 |
-
assert (y is not None) == (
|
797 |
-
self.num_classes is not None
|
798 |
-
), "must specify y if and only if the model is class-conditional"
|
799 |
-
hs = []
|
800 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
801 |
-
emb = self.time_embed(t_emb)
|
802 |
-
|
803 |
-
if self.num_classes is not None:
|
804 |
-
assert y.shape[0] == x.shape[0]
|
805 |
-
emb = emb + self.label_emb(y)
|
806 |
-
|
807 |
-
h = x.type(self.dtype)
|
808 |
-
for module in self.input_blocks:
|
809 |
-
h = module(h, emb, context)
|
810 |
-
hs.append(h)
|
811 |
-
h = self.middle_block(h, emb, context)
|
812 |
-
for module in self.output_blocks:
|
813 |
-
h = th.cat([h, hs.pop()], dim=1)
|
814 |
-
h = module(h, emb, context)
|
815 |
-
h = h.type(x.dtype)
|
816 |
-
if self.predict_codebook_ids:
|
817 |
-
return self.id_predictor(h)
|
818 |
-
else:
|
819 |
-
return self.out(h)
|
820 |
-
|
821 |
-
|
822 |
class MultiViewUNetModel(nn.Module):
|
823 |
"""
|
824 |
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
@@ -872,10 +471,10 @@ class MultiViewUNetModel(nn.Module):
|
|
872 |
use_scale_shift_norm=False,
|
873 |
resblock_updown=False,
|
874 |
use_new_attention_order=False,
|
875 |
-
use_spatial_transformer=False,
|
876 |
-
transformer_depth=1,
|
877 |
-
context_dim=None,
|
878 |
-
n_embed=None,
|
879 |
legacy=True,
|
880 |
disable_self_attentions=None,
|
881 |
num_attention_blocks=None,
|
@@ -885,6 +484,7 @@ class MultiViewUNetModel(nn.Module):
|
|
885 |
camera_dim=None,
|
886 |
):
|
887 |
super().__init__()
|
|
|
888 |
if use_spatial_transformer:
|
889 |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
890 |
|
@@ -911,19 +511,26 @@ class MultiViewUNetModel(nn.Module):
|
|
911 |
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
912 |
else:
|
913 |
if len(num_res_blocks) != len(channel_mult):
|
914 |
-
raise ValueError(
|
915 |
-
|
|
|
|
|
916 |
self.num_res_blocks = num_res_blocks
|
917 |
if disable_self_attentions is not None:
|
918 |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
919 |
assert len(disable_self_attentions) == len(channel_mult)
|
920 |
if num_attention_blocks is not None:
|
921 |
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
922 |
-
assert all(
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
|
|
|
|
|
|
|
|
|
|
927 |
|
928 |
self.attention_resolutions = attention_resolutions
|
929 |
self.dropout = dropout
|
@@ -966,25 +573,21 @@ class MultiViewUNetModel(nn.Module):
|
|
966 |
linear(adm_in_channels, time_embed_dim),
|
967 |
nn.SiLU(),
|
968 |
linear(time_embed_dim, time_embed_dim),
|
969 |
-
)
|
970 |
-
)
|
971 |
else:
|
972 |
raise ValueError()
|
973 |
|
974 |
-
self.input_blocks = nn.ModuleList(
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
)
|
979 |
-
]
|
980 |
-
)
|
981 |
self._feature_size = model_channels
|
982 |
input_block_chans = [model_channels]
|
983 |
ch = model_channels
|
984 |
ds = 1
|
985 |
for level, mult in enumerate(channel_mult):
|
986 |
for nr in range(self.num_res_blocks[level]):
|
987 |
-
layers = [
|
988 |
ResBlock(
|
989 |
ch,
|
990 |
time_embed_dim,
|
@@ -1005,12 +608,13 @@ class MultiViewUNetModel(nn.Module):
|
|
1005 |
if legacy:
|
1006 |
#num_heads = 1
|
1007 |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1008 |
-
if
|
1009 |
disabled_sa = disable_self_attentions[level]
|
1010 |
else:
|
1011 |
disabled_sa = False
|
1012 |
|
1013 |
-
if
|
|
|
1014 |
layers.append(
|
1015 |
AttentionBlock(
|
1016 |
ch,
|
@@ -1018,12 +622,16 @@ class MultiViewUNetModel(nn.Module):
|
|
1018 |
num_heads=num_heads,
|
1019 |
num_head_channels=dim_head,
|
1020 |
use_new_attention_order=use_new_attention_order,
|
1021 |
-
) if not use_spatial_transformer else
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
1026 |
-
|
|
|
|
|
|
|
|
|
1027 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1028 |
self._feature_size += ch
|
1029 |
input_block_chans.append(ch)
|
@@ -1040,12 +648,8 @@ class MultiViewUNetModel(nn.Module):
|
|
1040 |
use_checkpoint=use_checkpoint,
|
1041 |
use_scale_shift_norm=use_scale_shift_norm,
|
1042 |
down=True,
|
1043 |
-
)
|
1044 |
-
|
1045 |
-
else Downsample(
|
1046 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
1047 |
-
)
|
1048 |
-
)
|
1049 |
)
|
1050 |
ch = out_ch
|
1051 |
input_block_chans.append(ch)
|
@@ -1075,11 +679,16 @@ class MultiViewUNetModel(nn.Module):
|
|
1075 |
num_heads=num_heads,
|
1076 |
num_head_channels=dim_head,
|
1077 |
use_new_attention_order=use_new_attention_order,
|
1078 |
-
) if not use_spatial_transformer else
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
|
|
|
|
|
|
|
|
|
|
1083 |
ResBlock(
|
1084 |
ch,
|
1085 |
time_embed_dim,
|
@@ -1116,12 +725,13 @@ class MultiViewUNetModel(nn.Module):
|
|
1116 |
if legacy:
|
1117 |
#num_heads = 1
|
1118 |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1119 |
-
if
|
1120 |
disabled_sa = disable_self_attentions[level]
|
1121 |
else:
|
1122 |
disabled_sa = False
|
1123 |
|
1124 |
-
if
|
|
|
1125 |
layers.append(
|
1126 |
AttentionBlock(
|
1127 |
ch,
|
@@ -1129,12 +739,16 @@ class MultiViewUNetModel(nn.Module):
|
|
1129 |
num_heads=num_heads_upsample,
|
1130 |
num_head_channels=dim_head,
|
1131 |
use_new_attention_order=use_new_attention_order,
|
1132 |
-
) if not use_spatial_transformer else
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
|
|
|
|
|
|
|
|
|
1138 |
if level and i == self.num_res_blocks[level]:
|
1139 |
out_ch = ch
|
1140 |
layers.append(
|
@@ -1147,10 +761,8 @@ class MultiViewUNetModel(nn.Module):
|
|
1147 |
use_checkpoint=use_checkpoint,
|
1148 |
use_scale_shift_norm=use_scale_shift_norm,
|
1149 |
up=True,
|
1150 |
-
)
|
1151 |
-
|
1152 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
1153 |
-
)
|
1154 |
ds //= 2
|
1155 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
1156 |
self._feature_size += ch
|
@@ -1158,14 +770,15 @@ class MultiViewUNetModel(nn.Module):
|
|
1158 |
self.out = nn.Sequential(
|
1159 |
normalization(ch),
|
1160 |
nn.SiLU(),
|
1161 |
-
zero_module(
|
|
|
1162 |
)
|
1163 |
if self.predict_codebook_ids:
|
1164 |
self.id_predictor = nn.Sequential(
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
|
1170 |
def convert_to_fp16(self):
|
1171 |
"""
|
@@ -1183,7 +796,14 @@ class MultiViewUNetModel(nn.Module):
|
|
1183 |
self.middle_block.apply(convert_module_to_f32)
|
1184 |
self.output_blocks.apply(convert_module_to_f32)
|
1185 |
|
1186 |
-
def forward(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1187 |
"""
|
1188 |
Apply the model to an input batch.
|
1189 |
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
@@ -1193,15 +813,19 @@ class MultiViewUNetModel(nn.Module):
|
|
1193 |
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
1194 |
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
1195 |
"""
|
1196 |
-
assert x.shape[
|
|
|
1197 |
assert (y is not None) == (
|
1198 |
self.num_classes is not None
|
1199 |
), "must specify y if and only if the model is class-conditional"
|
1200 |
hs = []
|
1201 |
-
t_emb = timestep_embedding(timesteps,
|
|
|
|
|
1202 |
emb = self.time_embed(t_emb)
|
1203 |
|
1204 |
if self.num_classes is not None:
|
|
|
1205 |
assert y.shape[0] == x.shape[0]
|
1206 |
emb = emb + self.label_emb(y)
|
1207 |
|
@@ -1222,4 +846,4 @@ class MultiViewUNetModel(nn.Module):
|
|
1222 |
if self.predict_codebook_ids:
|
1223 |
return self.id_predictor(h)
|
1224 |
else:
|
1225 |
-
return self.out(h)
|
|
|
1 |
+
# obtained and modified from https://github.com/bytedance/MVDream
|
|
|
|
|
2 |
|
3 |
+
import math
|
4 |
import numpy as np
|
5 |
import torch as th
|
6 |
import torch.nn as nn
|
7 |
import torch.nn.functional as F
|
8 |
|
9 |
+
from abc import abstractmethod
|
10 |
from util import (
|
11 |
checkpoint,
|
12 |
conv_nd,
|
|
|
16 |
normalization,
|
17 |
timestep_embedding,
|
18 |
)
|
19 |
+
from attention import SpatialTransformer, SpatialTransformer3D
|
|
|
|
|
20 |
from diffusers.configuration_utils import ConfigMixin
|
21 |
from diffusers.models.modeling_utils import ModelMixin
|
22 |
+
from typing import Any, List, Optional
|
23 |
+
from torch import Tensor
|
24 |
+
|
25 |
+
|
26 |
class MultiViewUNetWrapperModel(ModelMixin, ConfigMixin):
|
27 |
+
|
28 |
def __init__(self, *args, **kwargs):
|
29 |
super().__init__()
|
30 |
self.unet: MultiViewUNetModel = MultiViewUNetModel(*args, **kwargs)
|
31 |
+
|
32 |
def forward(self, *args, **kwargs):
|
33 |
return self.unet(*args, **kwargs)
|
34 |
|
35 |
+
|
36 |
# dummy replace
|
37 |
def convert_module_to_f16(x):
|
38 |
pass
|
39 |
|
40 |
+
|
41 |
def convert_module_to_f32(x):
|
42 |
pass
|
43 |
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
class TimestepBlock(nn.Module):
|
46 |
"""
|
47 |
Any module where forward() takes timestep embeddings as a second argument.
|
|
|
82 |
upsampling occurs in the inner-two dimensions.
|
83 |
"""
|
84 |
|
85 |
+
def __init__(self,
|
86 |
+
channels,
|
87 |
+
use_conv,
|
88 |
+
dims=2,
|
89 |
+
out_channels=None,
|
90 |
+
padding=1):
|
91 |
super().__init__()
|
92 |
self.channels = channels
|
93 |
self.out_channels = out_channels or channels
|
94 |
self.use_conv = use_conv
|
95 |
self.dims = dims
|
96 |
if use_conv:
|
97 |
+
self.conv = conv_nd(dims,
|
98 |
+
self.channels,
|
99 |
+
self.out_channels,
|
100 |
+
3,
|
101 |
+
padding=padding)
|
102 |
|
103 |
def forward(self, x):
|
104 |
assert x.shape[1] == self.channels
|
105 |
if self.dims == 3:
|
106 |
+
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
|
107 |
+
mode="nearest")
|
|
|
108 |
else:
|
109 |
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
110 |
if self.use_conv:
|
111 |
x = self.conv(x)
|
112 |
return x
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
class Downsample(nn.Module):
|
116 |
"""
|
|
|
121 |
downsampling occurs in the inner-two dimensions.
|
122 |
"""
|
123 |
|
124 |
+
def __init__(self,
|
125 |
+
channels,
|
126 |
+
use_conv,
|
127 |
+
dims=2,
|
128 |
+
out_channels=None,
|
129 |
+
padding=1):
|
130 |
super().__init__()
|
131 |
self.channels = channels
|
132 |
self.out_channels = out_channels or channels
|
|
|
134 |
self.dims = dims
|
135 |
stride = 2 if dims != 3 else (1, 2, 2)
|
136 |
if use_conv:
|
137 |
+
self.op = conv_nd(dims,
|
138 |
+
self.channels,
|
139 |
+
self.out_channels,
|
140 |
+
3,
|
141 |
+
stride=stride,
|
142 |
+
padding=padding)
|
143 |
else:
|
144 |
assert self.channels == self.out_channels
|
145 |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
|
|
208 |
nn.SiLU(),
|
209 |
linear(
|
210 |
emb_channels,
|
211 |
+
2 * self.out_channels
|
212 |
+
if use_scale_shift_norm else self.out_channels,
|
213 |
),
|
214 |
)
|
215 |
self.out_layers = nn.Sequential(
|
|
|
217 |
nn.SiLU(),
|
218 |
nn.Dropout(p=dropout),
|
219 |
zero_module(
|
220 |
+
conv_nd(dims,
|
221 |
+
self.out_channels,
|
222 |
+
self.out_channels,
|
223 |
+
3,
|
224 |
+
padding=1)),
|
225 |
)
|
226 |
|
227 |
if self.out_channels == channels:
|
228 |
self.skip_connection = nn.Identity()
|
229 |
elif use_conv:
|
230 |
+
self.skip_connection = conv_nd(dims,
|
231 |
+
channels,
|
232 |
+
self.out_channels,
|
233 |
+
3,
|
234 |
+
padding=1)
|
235 |
else:
|
236 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels,
|
237 |
+
1)
|
238 |
|
239 |
def forward(self, x, emb):
|
240 |
"""
|
|
|
243 |
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
244 |
:return: an [N x C x ...] Tensor of outputs.
|
245 |
"""
|
246 |
+
return checkpoint(self._forward, (x, emb), self.parameters(),
|
247 |
+
self.use_checkpoint)
|
|
|
|
|
248 |
|
249 |
def _forward(self, x, emb):
|
250 |
if self.updown:
|
|
|
306 |
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
307 |
|
308 |
def forward(self, x):
|
309 |
+
return checkpoint(
|
310 |
+
self._forward, (x, ), self.parameters(), True
|
311 |
+
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
312 |
#return pt_checkpoint(self._forward, x) # pytorch
|
313 |
|
314 |
def _forward(self, x):
|
|
|
336 |
# We perform two matmuls with the same number of ops.
|
337 |
# The first computes the weight matrix, the second computes
|
338 |
# the combination of the value vectors.
|
339 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
340 |
model.total_ops += th.DoubleTensor([matmul_ops])
|
341 |
|
342 |
|
|
|
358 |
bs, width, length = qkv.shape
|
359 |
assert width % (3 * self.n_heads) == 0
|
360 |
ch = width // (3 * self.n_heads)
|
361 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch,
|
362 |
+
dim=1)
|
363 |
scale = 1 / math.sqrt(math.sqrt(ch))
|
364 |
weight = th.einsum(
|
365 |
+
"bct,bcs->bts", q * scale,
|
366 |
+
k * scale) # More stable with f16 than dividing afterwards
|
367 |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
368 |
a = th.einsum("bts,bcs->bct", weight, v)
|
369 |
return a.reshape(bs, -1, length)
|
|
|
399 |
(k * scale).view(bs * self.n_heads, ch, length),
|
400 |
) # More stable with f16 than dividing afterwards
|
401 |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
402 |
+
a = th.einsum("bts,bcs->bct", weight,
|
403 |
+
v.reshape(bs * self.n_heads, ch, length))
|
404 |
return a.reshape(bs, -1, length)
|
405 |
|
406 |
@staticmethod
|
|
|
409 |
|
410 |
|
411 |
class Timestep(nn.Module):
|
412 |
+
|
413 |
def __init__(self, dim):
|
414 |
super().__init__()
|
415 |
self.dim = dim
|
|
|
418 |
return timestep_embedding(t, self.dim)
|
419 |
|
420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
class MultiViewUNetModel(nn.Module):
|
422 |
"""
|
423 |
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
|
|
471 |
use_scale_shift_norm=False,
|
472 |
resblock_updown=False,
|
473 |
use_new_attention_order=False,
|
474 |
+
use_spatial_transformer=False, # custom transformer support
|
475 |
+
transformer_depth=1, # custom transformer support
|
476 |
+
context_dim=None, # custom transformer support
|
477 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
478 |
legacy=True,
|
479 |
disable_self_attentions=None,
|
480 |
num_attention_blocks=None,
|
|
|
484 |
camera_dim=None,
|
485 |
):
|
486 |
super().__init__()
|
487 |
+
assert num_classes is not None
|
488 |
if use_spatial_transformer:
|
489 |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
490 |
|
|
|
511 |
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
512 |
else:
|
513 |
if len(num_res_blocks) != len(channel_mult):
|
514 |
+
raise ValueError(
|
515 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
516 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
517 |
+
)
|
518 |
self.num_res_blocks = num_res_blocks
|
519 |
if disable_self_attentions is not None:
|
520 |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
521 |
assert len(disable_self_attentions) == len(channel_mult)
|
522 |
if num_attention_blocks is not None:
|
523 |
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
524 |
+
assert all(
|
525 |
+
map(
|
526 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i
|
527 |
+
],
|
528 |
+
range(len(num_attention_blocks))))
|
529 |
+
print(
|
530 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
531 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
532 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
533 |
+
f"attention will still not be set.")
|
534 |
|
535 |
self.attention_resolutions = attention_resolutions
|
536 |
self.dropout = dropout
|
|
|
573 |
linear(adm_in_channels, time_embed_dim),
|
574 |
nn.SiLU(),
|
575 |
linear(time_embed_dim, time_embed_dim),
|
576 |
+
))
|
|
|
577 |
else:
|
578 |
raise ValueError()
|
579 |
|
580 |
+
self.input_blocks = nn.ModuleList([
|
581 |
+
TimestepEmbedSequential(
|
582 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
583 |
+
])
|
|
|
|
|
|
|
584 |
self._feature_size = model_channels
|
585 |
input_block_chans = [model_channels]
|
586 |
ch = model_channels
|
587 |
ds = 1
|
588 |
for level, mult in enumerate(channel_mult):
|
589 |
for nr in range(self.num_res_blocks[level]):
|
590 |
+
layers: List[Any] = [
|
591 |
ResBlock(
|
592 |
ch,
|
593 |
time_embed_dim,
|
|
|
608 |
if legacy:
|
609 |
#num_heads = 1
|
610 |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
611 |
+
if disable_self_attentions is not None:
|
612 |
disabled_sa = disable_self_attentions[level]
|
613 |
else:
|
614 |
disabled_sa = False
|
615 |
|
616 |
+
if num_attention_blocks is None or nr < num_attention_blocks[
|
617 |
+
level]:
|
618 |
layers.append(
|
619 |
AttentionBlock(
|
620 |
ch,
|
|
|
622 |
num_heads=num_heads,
|
623 |
num_head_channels=dim_head,
|
624 |
use_new_attention_order=use_new_attention_order,
|
625 |
+
) if not use_spatial_transformer else
|
626 |
+
SpatialTransformer3D(
|
627 |
+
ch,
|
628 |
+
num_heads,
|
629 |
+
dim_head,
|
630 |
+
depth=transformer_depth,
|
631 |
+
context_dim=context_dim,
|
632 |
+
disable_self_attn=disabled_sa,
|
633 |
+
use_linear=use_linear_in_transformer,
|
634 |
+
use_checkpoint=use_checkpoint))
|
635 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
636 |
self._feature_size += ch
|
637 |
input_block_chans.append(ch)
|
|
|
648 |
use_checkpoint=use_checkpoint,
|
649 |
use_scale_shift_norm=use_scale_shift_norm,
|
650 |
down=True,
|
651 |
+
) if resblock_updown else Downsample(
|
652 |
+
ch, conv_resample, dims=dims, out_channels=out_ch))
|
|
|
|
|
|
|
|
|
653 |
)
|
654 |
ch = out_ch
|
655 |
input_block_chans.append(ch)
|
|
|
679 |
num_heads=num_heads,
|
680 |
num_head_channels=dim_head,
|
681 |
use_new_attention_order=use_new_attention_order,
|
682 |
+
) if not use_spatial_transformer else
|
683 |
+
SpatialTransformer3D( # always uses a self-attn
|
684 |
+
ch,
|
685 |
+
num_heads,
|
686 |
+
dim_head,
|
687 |
+
depth=transformer_depth,
|
688 |
+
context_dim=context_dim,
|
689 |
+
disable_self_attn=disable_middle_self_attn,
|
690 |
+
use_linear=use_linear_in_transformer,
|
691 |
+
use_checkpoint=use_checkpoint),
|
692 |
ResBlock(
|
693 |
ch,
|
694 |
time_embed_dim,
|
|
|
725 |
if legacy:
|
726 |
#num_heads = 1
|
727 |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
728 |
+
if disable_self_attentions is not None:
|
729 |
disabled_sa = disable_self_attentions[level]
|
730 |
else:
|
731 |
disabled_sa = False
|
732 |
|
733 |
+
if num_attention_blocks is None or i < num_attention_blocks[
|
734 |
+
level]:
|
735 |
layers.append(
|
736 |
AttentionBlock(
|
737 |
ch,
|
|
|
739 |
num_heads=num_heads_upsample,
|
740 |
num_head_channels=dim_head,
|
741 |
use_new_attention_order=use_new_attention_order,
|
742 |
+
) if not use_spatial_transformer else
|
743 |
+
SpatialTransformer3D(
|
744 |
+
ch,
|
745 |
+
num_heads,
|
746 |
+
dim_head,
|
747 |
+
depth=transformer_depth,
|
748 |
+
context_dim=context_dim,
|
749 |
+
disable_self_attn=disabled_sa,
|
750 |
+
use_linear=use_linear_in_transformer,
|
751 |
+
use_checkpoint=use_checkpoint))
|
752 |
if level and i == self.num_res_blocks[level]:
|
753 |
out_ch = ch
|
754 |
layers.append(
|
|
|
761 |
use_checkpoint=use_checkpoint,
|
762 |
use_scale_shift_norm=use_scale_shift_norm,
|
763 |
up=True,
|
764 |
+
) if resblock_updown else Upsample(
|
765 |
+
ch, conv_resample, dims=dims, out_channels=out_ch))
|
|
|
|
|
766 |
ds //= 2
|
767 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
768 |
self._feature_size += ch
|
|
|
770 |
self.out = nn.Sequential(
|
771 |
normalization(ch),
|
772 |
nn.SiLU(),
|
773 |
+
zero_module(
|
774 |
+
conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
775 |
)
|
776 |
if self.predict_codebook_ids:
|
777 |
self.id_predictor = nn.Sequential(
|
778 |
+
normalization(ch),
|
779 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
780 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
781 |
+
)
|
782 |
|
783 |
def convert_to_fp16(self):
|
784 |
"""
|
|
|
796 |
self.middle_block.apply(convert_module_to_f32)
|
797 |
self.output_blocks.apply(convert_module_to_f32)
|
798 |
|
799 |
+
def forward(self,
|
800 |
+
x,
|
801 |
+
timesteps=None,
|
802 |
+
context=None,
|
803 |
+
y: Optional[Tensor] = None,
|
804 |
+
camera=None,
|
805 |
+
num_frames=1,
|
806 |
+
**kwargs):
|
807 |
"""
|
808 |
Apply the model to an input batch.
|
809 |
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
|
|
813 |
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
814 |
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
815 |
"""
|
816 |
+
assert x.shape[
|
817 |
+
0] % num_frames == 0, "[UNet] input batch size must be dividable by num_frames!"
|
818 |
assert (y is not None) == (
|
819 |
self.num_classes is not None
|
820 |
), "must specify y if and only if the model is class-conditional"
|
821 |
hs = []
|
822 |
+
t_emb = timestep_embedding(timesteps,
|
823 |
+
self.model_channels,
|
824 |
+
repeat_only=False)
|
825 |
emb = self.time_embed(t_emb)
|
826 |
|
827 |
if self.num_classes is not None:
|
828 |
+
assert y is not None
|
829 |
assert y.shape[0] == x.shape[0]
|
830 |
emb = emb + self.label_emb(y)
|
831 |
|
|
|
846 |
if self.predict_codebook_ids:
|
847 |
return self.id_predictor(h)
|
848 |
else:
|
849 |
+
return self.out(h)
|
scripts/pipeline_mvdream.py
CHANGED
@@ -557,14 +557,30 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline):
|
|
557 |
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
558 |
timesteps = self.scheduler.timesteps
|
559 |
|
560 |
-
|
561 |
prompt=prompt,
|
562 |
device=device,
|
563 |
num_images_per_prompt=num_images_per_prompt,
|
564 |
do_classifier_free_guidance=do_classifier_free_guidance,
|
565 |
negative_prompt=negative_prompt,
|
566 |
) # type: ignore
|
567 |
-
prompt_embeds_neg, prompt_embeds_pos =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
568 |
|
569 |
# 5. Prepare latent variables
|
570 |
latents: torch.Tensor = self.prepare_latents(
|
@@ -604,7 +620,7 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline):
|
|
604 |
timesteps=torch.tensor([t] * 4 * multiplier,
|
605 |
device=device),
|
606 |
context=torch.cat([prompt_embeds_neg] * 4 +
|
607 |
-
[prompt_embeds_pos
|
608 |
num_frames=4,
|
609 |
camera=torch.cat([camera] * multiplier),
|
610 |
)
|
|
|
557 |
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
558 |
timesteps = self.scheduler.timesteps
|
559 |
|
560 |
+
_prompt_embeds: torch.Tensor = self._encode_prompt(
|
561 |
prompt=prompt,
|
562 |
device=device,
|
563 |
num_images_per_prompt=num_images_per_prompt,
|
564 |
do_classifier_free_guidance=do_classifier_free_guidance,
|
565 |
negative_prompt=negative_prompt,
|
566 |
) # type: ignore
|
567 |
+
prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
|
568 |
+
|
569 |
+
_, prompt_embeds_pos_2 = self._encode_prompt(
|
570 |
+
prompt="watermellon",
|
571 |
+
device=device,
|
572 |
+
num_images_per_prompt=num_images_per_prompt,
|
573 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
574 |
+
negative_prompt=negative_prompt,
|
575 |
+
).chunk(2) # type: ignore
|
576 |
+
|
577 |
+
_, prompt_embeds_pos_4 = self._encode_prompt(
|
578 |
+
prompt="long hair",
|
579 |
+
device=device,
|
580 |
+
num_images_per_prompt=num_images_per_prompt,
|
581 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
582 |
+
negative_prompt=negative_prompt,
|
583 |
+
).chunk(2) # type: ignore
|
584 |
|
585 |
# 5. Prepare latent variables
|
586 |
latents: torch.Tensor = self.prepare_latents(
|
|
|
620 |
timesteps=torch.tensor([t] * 4 * multiplier,
|
621 |
device=device),
|
622 |
context=torch.cat([prompt_embeds_neg] * 4 +
|
623 |
+
[prompt_embeds_pos, prompt_embeds_pos_2, prompt_embeds_pos, prompt_embeds_pos_4]),
|
624 |
num_frames=4,
|
625 |
camera=torch.cat([camera] * multiplier),
|
626 |
)
|
scripts/util.py
CHANGED
@@ -7,14 +7,14 @@
|
|
7 |
#
|
8 |
# thanks!
|
9 |
|
10 |
-
|
11 |
-
import os
|
12 |
import math
|
13 |
import torch
|
14 |
import torch.nn as nn
|
15 |
import numpy as np
|
16 |
-
from einops import repeat
|
17 |
import importlib
|
|
|
|
|
|
|
18 |
|
19 |
def instantiate_from_config(config):
|
20 |
if not "target" in config:
|
@@ -33,16 +33,22 @@ def get_obj_from_str(string, reload=False):
|
|
33 |
importlib.reload(module_imp)
|
34 |
return getattr(importlib.import_module(module, package=None), cls)
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
if schedule == "linear":
|
38 |
-
betas = (
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
elif schedule == "cosine":
|
43 |
timesteps = (
|
44 |
-
|
45 |
-
|
46 |
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
47 |
alphas = torch.cos(alphas).pow(2)
|
48 |
alphas = alphas / alphas[0]
|
@@ -50,22 +56,34 @@ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2,
|
|
50 |
betas = np.clip(betas, a_min=0, a_max=0.999)
|
51 |
|
52 |
elif schedule == "sqrt_linear":
|
53 |
-
betas = torch.linspace(linear_start,
|
|
|
|
|
|
|
54 |
elif schedule == "sqrt":
|
55 |
-
betas = torch.linspace(linear_start,
|
|
|
|
|
|
|
56 |
else:
|
57 |
raise ValueError(f"schedule '{schedule}' unknown.")
|
58 |
-
return betas.numpy()
|
59 |
|
60 |
|
61 |
-
def make_ddim_timesteps(ddim_discr_method,
|
|
|
|
|
|
|
62 |
if ddim_discr_method == 'uniform':
|
63 |
c = num_ddpm_timesteps // num_ddim_timesteps
|
64 |
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
65 |
elif ddim_discr_method == 'quad':
|
66 |
-
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8),
|
|
|
67 |
else:
|
68 |
-
raise NotImplementedError(
|
|
|
|
|
69 |
|
70 |
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
71 |
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
@@ -75,17 +93,26 @@ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timestep
|
|
75 |
return steps_out
|
76 |
|
77 |
|
78 |
-
def make_ddim_sampling_parameters(alphacums,
|
|
|
|
|
|
|
79 |
# select alphas for computing the variance schedule
|
80 |
alphas = alphacums[ddim_timesteps]
|
81 |
-
alphas_prev = np.asarray([alphacums[0]] +
|
|
|
82 |
|
83 |
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
84 |
-
sigmas = eta * np.sqrt(
|
|
|
85 |
if verbose:
|
86 |
-
print(
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
return sigmas, alphas, alphas_prev
|
90 |
|
91 |
|
@@ -111,7 +138,7 @@ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
|
111 |
def extract_into_tensor(a, t, x_shape):
|
112 |
b, *_ = t.shape
|
113 |
out = a.gather(-1, t)
|
114 |
-
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
115 |
|
116 |
|
117 |
def checkpoint(func, inputs, params, flag):
|
@@ -130,7 +157,9 @@ def checkpoint(func, inputs, params, flag):
|
|
130 |
else:
|
131 |
return func(*inputs)
|
132 |
|
|
|
133 |
class CheckpointFunction(torch.autograd.Function):
|
|
|
134 |
@staticmethod
|
135 |
def forward(ctx, run_function, length, *args):
|
136 |
ctx.run_function = run_function
|
@@ -143,7 +172,9 @@ class CheckpointFunction(torch.autograd.Function):
|
|
143 |
|
144 |
@staticmethod
|
145 |
def backward(ctx, *output_grads):
|
146 |
-
ctx.input_tensors = [
|
|
|
|
|
147 |
with torch.enable_grad():
|
148 |
# Fixes a bug where the first op in run_function modifies the
|
149 |
# Tensor storage in place, which is not allowed for detach()'d
|
@@ -174,12 +205,14 @@ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
|
174 |
if not repeat_only:
|
175 |
half = dim // 2
|
176 |
freqs = torch.exp(
|
177 |
-
-math.log(max_period) *
|
178 |
-
|
|
|
179 |
args = timesteps[:, None].float() * freqs[None]
|
180 |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
181 |
if dim % 2:
|
182 |
-
embedding = torch.cat(
|
|
|
183 |
else:
|
184 |
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
185 |
# import pdb; pdb.set_trace()
|
@@ -222,14 +255,17 @@ def normalization(channels):
|
|
222 |
|
223 |
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
224 |
class SiLU(nn.Module):
|
|
|
225 |
def forward(self, x):
|
226 |
return x * torch.sigmoid(x)
|
227 |
|
228 |
|
229 |
class GroupNorm32(nn.GroupNorm):
|
|
|
230 |
def forward(self, x):
|
231 |
return super().forward(x.float()).type(x.dtype)
|
232 |
|
|
|
233 |
def conv_nd(dims, *args, **kwargs):
|
234 |
"""
|
235 |
Create a 1D, 2D, or 3D convolution module.
|
@@ -267,8 +303,9 @@ class HybridConditioner(nn.Module):
|
|
267 |
|
268 |
def __init__(self, c_concat_config, c_crossattn_config):
|
269 |
super().__init__()
|
270 |
-
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
271 |
-
self.crossattn_conditioner = instantiate_from_config(
|
|
|
272 |
|
273 |
def forward(self, c_concat, c_crossattn):
|
274 |
c_concat = self.concat_conditioner(c_concat)
|
@@ -277,6 +314,7 @@ class HybridConditioner(nn.Module):
|
|
277 |
|
278 |
|
279 |
def noise_like(shape, device, repeat=False):
|
280 |
-
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
|
|
281 |
noise = lambda: torch.randn(shape, device=device)
|
282 |
-
return repeat_noise() if repeat else noise()
|
|
|
7 |
#
|
8 |
# thanks!
|
9 |
|
|
|
|
|
10 |
import math
|
11 |
import torch
|
12 |
import torch.nn as nn
|
13 |
import numpy as np
|
|
|
14 |
import importlib
|
15 |
+
from einops import repeat
|
16 |
+
from typing import Any
|
17 |
+
|
18 |
|
19 |
def instantiate_from_config(config):
|
20 |
if not "target" in config:
|
|
|
33 |
importlib.reload(module_imp)
|
34 |
return getattr(importlib.import_module(module, package=None), cls)
|
35 |
|
36 |
+
|
37 |
+
def make_beta_schedule(schedule,
|
38 |
+
n_timestep,
|
39 |
+
linear_start=1e-4,
|
40 |
+
linear_end=2e-2,
|
41 |
+
cosine_s=8e-3):
|
42 |
if schedule == "linear":
|
43 |
+
betas = (torch.linspace(linear_start**0.5,
|
44 |
+
linear_end**0.5,
|
45 |
+
n_timestep,
|
46 |
+
dtype=torch.float64)**2)
|
47 |
|
48 |
elif schedule == "cosine":
|
49 |
timesteps = (
|
50 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep +
|
51 |
+
cosine_s)
|
52 |
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
53 |
alphas = torch.cos(alphas).pow(2)
|
54 |
alphas = alphas / alphas[0]
|
|
|
56 |
betas = np.clip(betas, a_min=0, a_max=0.999)
|
57 |
|
58 |
elif schedule == "sqrt_linear":
|
59 |
+
betas = torch.linspace(linear_start,
|
60 |
+
linear_end,
|
61 |
+
n_timestep,
|
62 |
+
dtype=torch.float64)
|
63 |
elif schedule == "sqrt":
|
64 |
+
betas = torch.linspace(linear_start,
|
65 |
+
linear_end,
|
66 |
+
n_timestep,
|
67 |
+
dtype=torch.float64)**0.5
|
68 |
else:
|
69 |
raise ValueError(f"schedule '{schedule}' unknown.")
|
70 |
+
return betas.numpy() # type: ignore
|
71 |
|
72 |
|
73 |
+
def make_ddim_timesteps(ddim_discr_method,
|
74 |
+
num_ddim_timesteps,
|
75 |
+
num_ddpm_timesteps,
|
76 |
+
verbose=True):
|
77 |
if ddim_discr_method == 'uniform':
|
78 |
c = num_ddpm_timesteps // num_ddim_timesteps
|
79 |
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
80 |
elif ddim_discr_method == 'quad':
|
81 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8),
|
82 |
+
num_ddim_timesteps))**2).astype(int)
|
83 |
else:
|
84 |
+
raise NotImplementedError(
|
85 |
+
f'There is no ddim discretization method called "{ddim_discr_method}"'
|
86 |
+
)
|
87 |
|
88 |
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
89 |
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
|
|
93 |
return steps_out
|
94 |
|
95 |
|
96 |
+
def make_ddim_sampling_parameters(alphacums,
|
97 |
+
ddim_timesteps,
|
98 |
+
eta,
|
99 |
+
verbose=True):
|
100 |
# select alphas for computing the variance schedule
|
101 |
alphas = alphacums[ddim_timesteps]
|
102 |
+
alphas_prev = np.asarray([alphacums[0]] +
|
103 |
+
alphacums[ddim_timesteps[:-1]].tolist())
|
104 |
|
105 |
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
106 |
+
sigmas = eta * np.sqrt(
|
107 |
+
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
108 |
if verbose:
|
109 |
+
print(
|
110 |
+
f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}'
|
111 |
+
)
|
112 |
+
print(
|
113 |
+
f'For the chosen value of eta, which is {eta}, '
|
114 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}'
|
115 |
+
)
|
116 |
return sigmas, alphas, alphas_prev
|
117 |
|
118 |
|
|
|
138 |
def extract_into_tensor(a, t, x_shape):
|
139 |
b, *_ = t.shape
|
140 |
out = a.gather(-1, t)
|
141 |
+
return out.reshape(b, *((1, ) * (len(x_shape) - 1)))
|
142 |
|
143 |
|
144 |
def checkpoint(func, inputs, params, flag):
|
|
|
157 |
else:
|
158 |
return func(*inputs)
|
159 |
|
160 |
+
|
161 |
class CheckpointFunction(torch.autograd.Function):
|
162 |
+
|
163 |
@staticmethod
|
164 |
def forward(ctx, run_function, length, *args):
|
165 |
ctx.run_function = run_function
|
|
|
172 |
|
173 |
@staticmethod
|
174 |
def backward(ctx, *output_grads):
|
175 |
+
ctx.input_tensors = [
|
176 |
+
x.detach().requires_grad_(True) for x in ctx.input_tensors
|
177 |
+
]
|
178 |
with torch.enable_grad():
|
179 |
# Fixes a bug where the first op in run_function modifies the
|
180 |
# Tensor storage in place, which is not allowed for detach()'d
|
|
|
205 |
if not repeat_only:
|
206 |
half = dim // 2
|
207 |
freqs = torch.exp(
|
208 |
+
-math.log(max_period) *
|
209 |
+
torch.arange(start=0, end=half, dtype=torch.float32) /
|
210 |
+
half).to(device=timesteps.device)
|
211 |
args = timesteps[:, None].float() * freqs[None]
|
212 |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
213 |
if dim % 2:
|
214 |
+
embedding = torch.cat(
|
215 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
216 |
else:
|
217 |
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
218 |
# import pdb; pdb.set_trace()
|
|
|
255 |
|
256 |
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
257 |
class SiLU(nn.Module):
|
258 |
+
|
259 |
def forward(self, x):
|
260 |
return x * torch.sigmoid(x)
|
261 |
|
262 |
|
263 |
class GroupNorm32(nn.GroupNorm):
|
264 |
+
|
265 |
def forward(self, x):
|
266 |
return super().forward(x.float()).type(x.dtype)
|
267 |
|
268 |
+
|
269 |
def conv_nd(dims, *args, **kwargs):
|
270 |
"""
|
271 |
Create a 1D, 2D, or 3D convolution module.
|
|
|
303 |
|
304 |
def __init__(self, c_concat_config, c_crossattn_config):
|
305 |
super().__init__()
|
306 |
+
self.concat_conditioner: Any = instantiate_from_config(c_concat_config)
|
307 |
+
self.crossattn_conditioner: Any = instantiate_from_config(
|
308 |
+
c_crossattn_config)
|
309 |
|
310 |
def forward(self, c_concat, c_crossattn):
|
311 |
c_concat = self.concat_conditioner(c_concat)
|
|
|
314 |
|
315 |
|
316 |
def noise_like(shape, device, repeat=False):
|
317 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
318 |
+
shape[0], *((1, ) * (len(shape) - 1)))
|
319 |
noise = lambda: torch.randn(shape, device=device)
|
320 |
+
return repeat_noise() if repeat else noise()
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/clip-vit-large-patch14",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.34.1",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06da5c5b4b82aff7c4264398cbdd9f85d7cb2debc93e1e27c16a31222211b6e0
|
3 |
+
size 492309274
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|startoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": true,
|
23 |
+
"do_lower_case": true,
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"errors": "replace",
|
26 |
+
"model_max_length": 77,
|
27 |
+
"pad_token": "<|endoftext|>",
|
28 |
+
"tokenizer_class": "CLIPTokenizer",
|
29 |
+
"unk_token": "<|endoftext|>"
|
30 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unet/config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "MultiViewUNetWrapperModel",
|
3 |
+
"_diffusers_version": "0.21.4"
|
4 |
+
}
|
unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d04d15df72f825a031626fad29c8478d6b084442b33f7cf61e3d2acb85f7ff9
|
3 |
+
size 3445031598
|
vae/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.21.4",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"force_upcast": true,
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 4,
|
20 |
+
"layers_per_block": 2,
|
21 |
+
"norm_num_groups": 32,
|
22 |
+
"out_channels": 3,
|
23 |
+
"sample_size": 256,
|
24 |
+
"scaling_factor": 0.18215,
|
25 |
+
"up_block_types": [
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D",
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D"
|
30 |
+
]
|
31 |
+
}
|
vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f1b909aa85cc520a2986d6fc379478e0c46c41f853f9a7c73c0150b2c9c9b8b
|
3 |
+
size 334716034
|