# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py | |
import argparse | |
import torch | |
import sys | |
sys.path.insert(0, '../') | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers.models import ( | |
AutoencoderKL, | |
UNet2DConditionModel, | |
) | |
from diffusers.schedulers import DDIMScheduler | |
from diffusers.utils import logging | |
from accelerate import init_empty_weights | |
from accelerate.utils import set_module_tensor_to_device | |
from rich import print, print_json | |
from models import MultiViewUNetModel, MultiViewUNetWrapperModel | |
from pipeline_mvdream import MVDreamStableDiffusionPipeline | |
from transformers import CLIPTokenizer, CLIPTextModel | |
logger = logging.get_logger(__name__) | |
# def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): | |
# """ | |
# Creates a config for the diffusers based on the config of the LDM model. | |
# """ | |
# if controlnet: | |
# unet_params = original_config.model.params.control_stage_config.params | |
# else: | |
# if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None: | |
# unet_params = original_config.model.params.unet_config.params | |
# else: | |
# unet_params = original_config.model.params.network_config.params | |
# vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
# block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] | |
# down_block_types = [] | |
# resolution = 1 | |
# for i in range(len(block_out_channels)): | |
# block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D" | |
# down_block_types.append(block_type) | |
# if i != len(block_out_channels) - 1: | |
# resolution *= 2 | |
# up_block_types = [] | |
# for i in range(len(block_out_channels)): | |
# block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D" | |
# up_block_types.append(block_type) | |
# resolution //= 2 | |
# if unet_params.transformer_depth is not None: | |
# transformer_layers_per_block = ( | |
# unet_params.transformer_depth | |
# if isinstance(unet_params.transformer_depth, int) | |
# else list(unet_params.transformer_depth) | |
# ) | |
# else: | |
# transformer_layers_per_block = 1 | |
# vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) | |
# head_dim = unet_params.num_heads if "num_heads" in unet_params else None | |
# use_linear_projection = ( | |
# unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False | |
# ) | |
# if use_linear_projection: | |
# # stable diffusion 2-base-512 and 2-768 | |
# if head_dim is None: | |
# head_dim_mult = unet_params.model_channels // unet_params.num_head_channels | |
# head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)] | |
# class_embed_type = None | |
# addition_embed_type = None | |
# addition_time_embed_dim = None | |
# projection_class_embeddings_input_dim = None | |
# context_dim = None | |
# if unet_params.context_dim is not None: | |
# context_dim = ( | |
# unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0] | |
# ) | |
# if "num_classes" in unet_params: | |
# if unet_params.num_classes == "sequential": | |
# if context_dim in [2048, 1280]: | |
# # SDXL | |
# addition_embed_type = "text_time" | |
# addition_time_embed_dim = 256 | |
# else: | |
# class_embed_type = "projection" | |
# assert "adm_in_channels" in unet_params | |
# projection_class_embeddings_input_dim = unet_params.adm_in_channels | |
# else: | |
# raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}") | |
# config = { | |
# "sample_size": image_size // vae_scale_factor, | |
# "in_channels": unet_params.in_channels, | |
# "down_block_types": tuple(down_block_types), | |
# "block_out_channels": tuple(block_out_channels), | |
# "layers_per_block": unet_params.num_res_blocks, | |
# "cross_attention_dim": context_dim, | |
# "attention_head_dim": head_dim, | |
# "use_linear_projection": use_linear_projection, | |
# "class_embed_type": class_embed_type, | |
# "addition_embed_type": addition_embed_type, | |
# "addition_time_embed_dim": addition_time_embed_dim, | |
# "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, | |
# "transformer_layers_per_block": transformer_layers_per_block, | |
# } | |
# if controlnet: | |
# config["conditioning_channels"] = unet_params.hint_channels | |
# else: | |
# config["out_channels"] = unet_params.out_channels | |
# config["up_block_types"] = tuple(up_block_types) | |
# return config | |
def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None): | |
""" | |
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
attention layers, and takes into account additional replacements that may arise. | |
Assigns the weights to the new checkpoint. | |
""" | |
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
# Splits the attention layers into three variables. | |
if attention_paths_to_split is not None: | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
assert config is not None | |
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape) | |
checkpoint[path_map["key"]] = key.reshape(target_shape) | |
checkpoint[path_map["value"]] = value.reshape(target_shape) | |
for path in paths: | |
new_path = path["new"] | |
# These have already been assigned | |
if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
continue | |
# Global renaming happens here | |
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path) | |
shape = old_checkpoint[path["old"]].shape | |
if is_attn_weight and len(shape) == 3: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
elif is_attn_weight and len(shape) == 4: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] | |
else: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item.replace("in_layers.0", "norm1") | |
new_item = new_item.replace("in_layers.2", "conv1") | |
new_item = new_item.replace("out_layers.0", "norm2") | |
new_item = new_item.replace("out_layers.3", "conv2") | |
new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
new_item = new_item.replace("skip_connection", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
# new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
# new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
# def convert_ldm_unet_checkpoint( | |
# checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False | |
# ): | |
# """ | |
# Takes a state dict and a config, and returns a converted checkpoint. | |
# """ | |
# if skip_extract_state_dict: | |
# unet_state_dict = checkpoint | |
# else: | |
# # extract state_dict for UNet | |
# unet_state_dict = {} | |
# keys = list(checkpoint.keys()) | |
# if controlnet: | |
# unet_key = "control_model." | |
# else: | |
# unet_key = "model.diffusion_model." | |
# # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
# if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
# logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.") | |
# logger.warning( | |
# "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
# " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
# ) | |
# for key in keys: | |
# if key.startswith("model.diffusion_model"): | |
# flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
# unet_state_dict[key.replace(unet_key, "")] = checkpoint[flat_ema_key] | |
# else: | |
# if sum(k.startswith("model_ema") for k in keys) > 100: | |
# logger.warning( | |
# "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
# " weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
# ) | |
# for key in keys: | |
# if key.startswith(unet_key): | |
# unet_state_dict[key.replace(unet_key, "")] = checkpoint[key] | |
# new_checkpoint = {} | |
# new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
# new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
# new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
# new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
# if config["class_embed_type"] is None: | |
# # No parameters to port | |
# ... | |
# elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection": | |
# new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] | |
# new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] | |
# new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] | |
# new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] | |
# else: | |
# raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") | |
# if config["addition_embed_type"] == "text_time": | |
# new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] | |
# new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] | |
# new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] | |
# new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] | |
# new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
# new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
# if not controlnet: | |
# new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
# new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
# new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
# new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
# # Retrieves the keys for the input blocks only | |
# num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
# input_blocks = { | |
# layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
# for layer_id in range(num_input_blocks) | |
# } | |
# # Retrieves the keys for the middle blocks only | |
# num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
# middle_blocks = { | |
# layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
# for layer_id in range(num_middle_blocks) | |
# } | |
# # Retrieves the keys for the output blocks only | |
# num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
# output_blocks = { | |
# layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
# for layer_id in range(num_output_blocks) | |
# } | |
# for i in range(1, num_input_blocks): | |
# block_id = (i - 1) // (config["layers_per_block"] + 1) | |
# layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
# resnets = [ | |
# key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
# ] | |
# attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
# if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
# new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
# f"input_blocks.{i}.0.op.weight" | |
# ) | |
# new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
# f"input_blocks.{i}.0.op.bias" | |
# ) | |
# paths = renew_resnet_paths(resnets) | |
# meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
# assign_to_checkpoint( | |
# paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
# ) | |
# if len(attentions): | |
# paths = renew_attention_paths(attentions) | |
# meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
# assign_to_checkpoint( | |
# paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
# ) | |
# resnet_0 = middle_blocks[0] | |
# attentions = middle_blocks[1] | |
# resnet_1 = middle_blocks[2] | |
# resnet_0_paths = renew_resnet_paths(resnet_0) | |
# assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
# resnet_1_paths = renew_resnet_paths(resnet_1) | |
# assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
# attentions_paths = renew_attention_paths(attentions) | |
# meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
# assign_to_checkpoint( | |
# attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
# ) | |
# for i in range(num_output_blocks): | |
# block_id = i // (config["layers_per_block"] + 1) | |
# layer_in_block_id = i % (config["layers_per_block"] + 1) | |
# output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
# output_block_list = {} | |
# for layer in output_block_layers: | |
# layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
# if layer_id in output_block_list: | |
# output_block_list[layer_id].append(layer_name) | |
# else: | |
# output_block_list[layer_id] = [layer_name] | |
# if len(output_block_list) > 1: | |
# resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
# attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
# resnet_0_paths = renew_resnet_paths(resnets) | |
# paths = renew_resnet_paths(resnets) | |
# meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
# assign_to_checkpoint( | |
# paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
# ) | |
# output_block_list = {k: sorted(v) for k, v in output_block_list.items()} | |
# if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
# index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
# new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
# f"output_blocks.{i}.{index}.conv.weight" | |
# ] | |
# new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
# f"output_blocks.{i}.{index}.conv.bias" | |
# ] | |
# # Clear attentions as they have been attributed above. | |
# if len(attentions) == 2: | |
# attentions = [] | |
# if len(attentions): | |
# paths = renew_attention_paths(attentions) | |
# meta_path = { | |
# "old": f"output_blocks.{i}.1", | |
# "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
# } | |
# assign_to_checkpoint( | |
# paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
# ) | |
# else: | |
# resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
# for path in resnet_0_paths: | |
# old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
# new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
# new_checkpoint[new_path] = unet_state_dict[old_path] | |
# if controlnet: | |
# # conditioning embedding | |
# orig_index = 0 | |
# new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop( | |
# f"input_hint_block.{orig_index}.weight" | |
# ) | |
# new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop( | |
# f"input_hint_block.{orig_index}.bias" | |
# ) | |
# orig_index += 2 | |
# diffusers_index = 0 | |
# while diffusers_index < 6: | |
# new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop( | |
# f"input_hint_block.{orig_index}.weight" | |
# ) | |
# new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop( | |
# f"input_hint_block.{orig_index}.bias" | |
# ) | |
# diffusers_index += 1 | |
# orig_index += 2 | |
# new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop( | |
# f"input_hint_block.{orig_index}.weight" | |
# ) | |
# new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop( | |
# f"input_hint_block.{orig_index}.bias" | |
# ) | |
# # down blocks | |
# for i in range(num_input_blocks): | |
# new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight") | |
# new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias") | |
# # mid block | |
# new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight") | |
# new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias") | |
# return new_checkpoint | |
def create_vae_diffusers_config(original_config, image_size: int): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
_ = original_config.model.params.first_stage_config.params.embed_dim | |
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = { | |
"sample_size": image_size, | |
"in_channels": vae_params.in_channels, | |
"out_channels": vae_params.out_ch, | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"latent_channels": vae_params.z_channels, | |
"layers_per_block": vae_params.num_res_blocks, | |
} | |
return config | |
def convert_ldm_vae_checkpoint(checkpoint, config): | |
# extract state dict for VAE | |
vae_state_dict = {} | |
vae_key = "first_stage_model." | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(vae_key): | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
down_blocks = {layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
up_blocks = {layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight") | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias") | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("norm.weight", "group_norm.weight") | |
new_item = new_item.replace("norm.bias", "group_norm.bias") | |
new_item = new_item.replace("q.weight", "to_q.weight") | |
new_item = new_item.replace("q.bias", "to_q.bias") | |
new_item = new_item.replace("k.weight", "to_k.weight") | |
new_item = new_item.replace("k.bias", "to_k.bias") | |
new_item = new_item.replace("v.weight", "to_v.weight") | |
new_item = new_item.replace("v.bias", "to_v.bias") | |
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") | |
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device): | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
# print(f"Checkpoint: {checkpoint.keys()}") | |
torch.cuda.empty_cache() | |
from omegaconf import OmegaConf | |
original_config = OmegaConf.load(original_config_file) | |
# print(f"Original Config: {original_config}") | |
prediction_type = "epsilon" | |
image_size = 256 | |
num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000 | |
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 | |
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 | |
scheduler = DDIMScheduler( | |
beta_end=beta_end, | |
beta_schedule="scaled_linear", | |
beta_start=beta_start, | |
num_train_timesteps=num_train_timesteps, | |
steps_offset=1, | |
clip_sample=False, | |
set_alpha_to_one=False, | |
prediction_type=prediction_type, | |
) | |
scheduler.register_to_config(clip_sample=False) | |
# Convert the UNet2DConditionModel model. | |
# upcast_attention = None | |
# unet_config = create_unet_diffusers_config(original_config, image_size=image_size) | |
# unet_config["upcast_attention"] = upcast_attention | |
# with init_empty_weights(): | |
# unet = UNet2DConditionModel(**unet_config) | |
# converted_unet_checkpoint = convert_ldm_unet_checkpoint( | |
# checkpoint, unet_config, path=None, extract_ema=extract_ema | |
# ) | |
# print(f"Unet Config: {original_config.model.params.unet_config.params}") | |
unet: MultiViewUNetWrapperModel = MultiViewUNetWrapperModel(**original_config.model.params.unet_config.params) | |
# print(f"Unet State Dict: {unet.state_dict().keys()}") | |
unet.load_state_dict({key.replace("model.diffusion_model.", "unet."): value for key, value in checkpoint.items() if key.replace("model.diffusion_model.", "unet.") in unet.state_dict()}) | |
for param_name, param in unet.state_dict().items(): | |
set_module_tensor_to_device(unet, param_name, "cuda:0", value=param) | |
# Convert the VAE model. | |
vae_config = create_vae_diffusers_config(original_config, image_size=image_size) | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) | |
if ("model" in original_config and "params" in original_config.model and "scale_factor" in original_config.model.params): | |
vae_scaling_factor = original_config.model.params.scale_factor | |
else: | |
vae_scaling_factor = 0.18215 # default SD scaling factor | |
vae_config["scaling_factor"] = vae_scaling_factor | |
with init_empty_weights(): | |
vae = AutoencoderKL(**vae_config) | |
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device=torch.device("cuda:0")) # type: ignore | |
for param_name, param in converted_vae_checkpoint.items(): | |
set_module_tensor_to_device(vae, param_name, "cuda:0", value=param) | |
pipe = MVDreamStableDiffusionPipeline( | |
vae=vae, | |
unet=unet, | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
scheduler=scheduler, | |
) | |
return pipe | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert.") | |
parser.add_argument( | |
"--original_config_file", | |
default=None, | |
type=str, | |
help="The YAML config file corresponding to the original architecture.", | |
) | |
parser.add_argument( | |
"--to_safetensors", | |
action="store_true", | |
help="Whether to store pipeline in safetensors format or not.", | |
) | |
parser.add_argument("--half", action="store_true", help="Save weights in half precision.") | |
parser.add_argument("--test", help="Whether to test inference after convertion.") | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") | |
args = parser.parse_args() | |
pipe = convert_from_original_mvdream_ckpt( | |
checkpoint_path=args.checkpoint_path, | |
original_config_file=args.original_config_file, | |
device=args.device, | |
) | |
if args.half: | |
pipe.to(torch_dtype=torch.float16) | |
if args.test: | |
images = pipe( | |
prompt="Head of Hatsune Miku", | |
negative_prompt="painting, bad quality, flat", | |
output_type="pil", | |
guidance_scale=7.5, | |
num_inference_steps=50, | |
) | |
for i, image in enumerate(images): | |
image.save(f"image_{i}.png") # type: ignore | |
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |