KoichiYasuoka's picture
chu_liu_edmonds included
0ff8f8f
raw
history blame
2.96 kB
from transformers import TokenClassificationPipeline
class UniversalDependenciesPipeline(TokenClassificationPipeline):
def _forward(self,model_input):
import torch
v=model_input["input_ids"][0].tolist()
with torch.no_grad():
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)]))
return {"logits":e.logits[:,1:-2,:],**model_input}
def postprocess(self,model_output,**kwargs):
import numpy
import ufal.chu_liu_edmonds
e=model_output["logits"].numpy()
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
g=self.model.config.label2id["X|_|goeswith"]
r=numpy.tri(e.shape[0])
for i in range(e.shape[0]):
for j in range(i+2,e.shape[1]):
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
h=self.chu_liu_edmonds(m)
z=[i for i,j in enumerate(h) if i==j]
if len(z)>1:
k=z[numpy.nanargmax(m[z,z])]
m[:,z]+=[[0 if j in z and (i!=j or i==k) else numpy.nan for i in z] for j in range(m.shape[0])]
h=self.chu_liu_edmonds(m)
v=[(s,e) for s,e in model_output["offset_mapping"][0].tolist() if s<e]
q=[self.model.config.id2label[p[i,j]].split("|") for i,j in enumerate(h)]
g="aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none"
if g:
for i,j in reversed(list(enumerate(q[2:],2))):
if j[-1]=="goeswith":
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
v[i-2]=(v[i-2][0],v.pop(i-1)[1])
q.pop(i)
t=model_output["sentence"].replace("\n"," ")
u="# text = "+t+"\n"
for i,(s,e) in enumerate(v,1):
u+="\t".join([str(i),t[s:e],t[s:e] if g else "_",q[i][0],"_","|".join(q[i][1:-1]),str(h[i]),q[i][-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
def chu_liu_edmonds(self,matrix):
import numpy
h=numpy.nanargmax(matrix,axis=0)
x=[-1 if i==j else j for i,j in enumerate(h)]
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
y=[]
while x!=y:
y=list(x)
for i,j in enumerate(x):
x[i]=b(x,i,j)
if max(x)<0:
return h
y,m=[i for i,j in enumerate(x) if j==max(x)],numpy.full((matrix.shape[0]+1,matrix.shape[1]+1),numpy.nan)
m[0:-1,0:-1]=z=matrix-numpy.nanmax(matrix,axis=0)
m[0:-1,-1],m[-1,0:-1],m[-1,-1]=numpy.nanmax(z[:,y],axis=1),numpy.nanmax(z[y,:],axis=0),numpy.nanmax(z[y,y])
m[y,:]=m[:,y]=numpy.nan
m[y,y]=0
k=self.chu_liu_edmonds(m)
j=y[numpy.nanargmax(z[k[-1],y] if k[-1]<z.shape[0] else z[y,y])]
i=k[-1] if k[-1]<z.shape[0] else j
z[0:i,j]=z[i+1:,j]=numpy.nan
return self.chu_liu_edmonds(z)