KoichiYasuoka's picture
lemma improved
cbdb566
from transformers import TokenClassificationPipeline
class UniversalDependenciesPipeline(TokenClassificationPipeline):
def _forward(self,model_inputs):
import torch
v=model_inputs["input_ids"][0].tolist()
with torch.no_grad():
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
return {"logits":e.logits[:,1:-2,:],**model_inputs}
def postprocess(self,model_outputs,**kwargs):
import numpy
if "logits" not in model_outputs:
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
e=model_outputs["logits"].numpy()
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
g=self.model.config.label2id["X|_|goeswith"]
r=numpy.tri(e.shape[0])
for i in range(e.shape[0]):
for j in range(i+2,e.shape[1]):
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
h=self.chu_liu_edmonds(m)
z=[i for i,j in enumerate(h) if i==j]
if len(z)>1:
k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
h=self.chu_liu_edmonds(m)
t=model_outputs["sentence"].replace("\n"," ")
v=[(s,e,c if c!=self.tokenizer.unk_token else t[s:e]) for (s,e),c in zip(model_outputs["offset_mapping"][0].tolist(),self.tokenizer.convert_ids_to_tokens(model_outputs["input_ids"][0].tolist())) if s<e]
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
g="aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none"
if g:
for i,j in reversed(list(enumerate(q[1:],1))):
if j[-1]=="goeswith" and set([k[-1] for k in q[h[i]+1:i+1]])=={"goeswith"}:
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
s,e,c=v.pop(i)
v[i-1]=(v[i-1][0],e,v[i-1][2]+c)
q.pop(i)
u="\n"
z={"a":"ア","i":"イ","u":"ウ","e":"エ","o":"オ","k":"ㇰ","s":"ㇱ","t":"ㇳ","n":"ㇴ","h":"ㇷ","m":"ㇺ","r":"ㇽ","p":"ㇷ゚"}
f=-1
for i,(s,e,c) in reversed(list(enumerate(v))):
if t[s]=="\u309a":
s-=1
w,x=[j for j in t[s:e]],""
if i>0 and s<v[i-1][1]:
w[0]=z[c[0]] if c[0] in z else "ッ"
f=max(f,i)
elif f>0:
x="{}-{}\t{}\t_\t_\t_\t_\t_\t_\t_\t{}\n".format(i+1,f+1,t[s:v[f][1]],"_" if f+1<len(v) and v[f][1]<v[f+1][0] else "SpaceAfter=No")
f=-1
if i+1<len(v) and e>v[i+1][0]:
w[-1]=z[c[-1]] if c[-1] in z else "ッ"
if g:
l="".join(w).replace(" ","") if max(w)<"z" else c
l=l.replace("sh","s").replace("ch","c").replace("au","aw").replace("iu","iw").replace("eu","ew").replace("uu","uw").replace("ou","ow").replace("ai","ay").replace("ui","uy").replace("ei","ey").replace("oi","oy")
if q[i][1]=="人称接辞":
if l.find("=")<0:
l="="+l if i>h[i] else l+"="
else:
l="_"
u=x+"\t".join([str(i+1),"".join(w),l,q[i][0],"|".join(q[i][1:-1]),"_",str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"+u
return "# text = "+t+"\n"+u
def chu_liu_edmonds(self,matrix):
import numpy
h=numpy.nanargmax(matrix,axis=0)
x=[-1 if i==j else j for i,j in enumerate(h)]
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
y=[]
while x!=y:
y=list(x)
for i,j in enumerate(x):
x[i]=b(x,i,j)
if max(x)<0:
return h
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
z=matrix-numpy.nanmax(matrix,axis=0)
m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
h[i]=x[k[-1]] if k[-1]<len(x) else i
return h