KoichiYasuoka commited on
Commit
2438d8a
1 Parent(s): 3ff419c

initial release

Browse files
Files changed (6) hide show
  1. README.md +26 -0
  2. config.json +25 -0
  3. pytorch_model.bin +3 -0
  4. special_tokens_map.json +7 -0
  5. tokenizer_config.json +57 -0
  6. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "bo"
4
+ tags:
5
+ - "tibetan"
6
+ - "masked-lm"
7
+ base_model: Pagewood/Tibetan-BERT-wwm
8
+ license: "apache-2.0"
9
+ pipeline_tag: "fill-mask"
10
+ mask_token: "[MASK]"
11
+ ---
12
+
13
+ # bert-base-tibetan
14
+
15
+ ## Model Description
16
+
17
+ This is a BERT model pre-trained on Tibetan texts, derived from [Tibetan-BERT-wwm](https://huggingface.co/Pagewood/Tibetan-BERT-wwm). You can fine-tune `bert-base-tibetan` for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
18
+
19
+ ## How to Use
20
+
21
+ ```py
22
+ from transformers import AutoTokenizer,AutoModelForMaskedLM
23
+ tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-tibetan")
24
+ model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/bert-base-tibetan")
25
+ ```
26
+
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForPreTraining"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "tokenizer_class": "BertTokenizer",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.44.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 29849
25
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4f98c0c546128f7dd446be8a7235d8f64648369d10d1bced8bce9a712013d22
3
+ size 438423362
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": false,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff