Koat commited on
Commit
b32e2a6
1 Parent(s): a4a9ce5

Upload 17 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,2692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: gte_tiny
4
+ results:
5
+ - task:
6
+ type: Classification
7
+ dataset:
8
+ type: mteb/amazon_counterfactual
9
+ name: MTEB AmazonCounterfactualClassification (en)
10
+ config: en
11
+ split: test
12
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
13
+ metrics:
14
+ - type: accuracy
15
+ value: 71.76119402985076
16
+ - type: ap
17
+ value: 34.63659287952359
18
+ - type: f1
19
+ value: 65.88939512571113
20
+ - task:
21
+ type: Classification
22
+ dataset:
23
+ type: mteb/amazon_polarity
24
+ name: MTEB AmazonPolarityClassification
25
+ config: default
26
+ split: test
27
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
28
+ metrics:
29
+ - type: accuracy
30
+ value: 86.61324999999998
31
+ - type: ap
32
+ value: 81.7476302802319
33
+ - type: f1
34
+ value: 86.5863470912001
35
+ - task:
36
+ type: Classification
37
+ dataset:
38
+ type: mteb/amazon_reviews_multi
39
+ name: MTEB AmazonReviewsClassification (en)
40
+ config: en
41
+ split: test
42
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
43
+ metrics:
44
+ - type: accuracy
45
+ value: 42.61000000000001
46
+ - type: f1
47
+ value: 42.2217180000715
48
+ - task:
49
+ type: Retrieval
50
+ dataset:
51
+ type: arguana
52
+ name: MTEB ArguAna
53
+ config: default
54
+ split: test
55
+ revision: None
56
+ metrics:
57
+ - type: map_at_1
58
+ value: 28.377999999999997
59
+ - type: map_at_10
60
+ value: 44.565
61
+ - type: map_at_100
62
+ value: 45.48
63
+ - type: map_at_1000
64
+ value: 45.487
65
+ - type: map_at_3
66
+ value: 39.841
67
+ - type: map_at_5
68
+ value: 42.284
69
+ - type: mrr_at_1
70
+ value: 29.445
71
+ - type: mrr_at_10
72
+ value: 44.956
73
+ - type: mrr_at_100
74
+ value: 45.877
75
+ - type: mrr_at_1000
76
+ value: 45.884
77
+ - type: mrr_at_3
78
+ value: 40.209
79
+ - type: mrr_at_5
80
+ value: 42.719
81
+ - type: ndcg_at_1
82
+ value: 28.377999999999997
83
+ - type: ndcg_at_10
84
+ value: 53.638
85
+ - type: ndcg_at_100
86
+ value: 57.354000000000006
87
+ - type: ndcg_at_1000
88
+ value: 57.513000000000005
89
+ - type: ndcg_at_3
90
+ value: 43.701
91
+ - type: ndcg_at_5
92
+ value: 48.114000000000004
93
+ - type: precision_at_1
94
+ value: 28.377999999999997
95
+ - type: precision_at_10
96
+ value: 8.272
97
+ - type: precision_at_100
98
+ value: 0.984
99
+ - type: precision_at_1000
100
+ value: 0.1
101
+ - type: precision_at_3
102
+ value: 18.303
103
+ - type: precision_at_5
104
+ value: 13.129
105
+ - type: recall_at_1
106
+ value: 28.377999999999997
107
+ - type: recall_at_10
108
+ value: 82.717
109
+ - type: recall_at_100
110
+ value: 98.43499999999999
111
+ - type: recall_at_1000
112
+ value: 99.644
113
+ - type: recall_at_3
114
+ value: 54.908
115
+ - type: recall_at_5
116
+ value: 65.647
117
+ - task:
118
+ type: Clustering
119
+ dataset:
120
+ type: mteb/arxiv-clustering-p2p
121
+ name: MTEB ArxivClusteringP2P
122
+ config: default
123
+ split: test
124
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
125
+ metrics:
126
+ - type: v_measure
127
+ value: 46.637318326729876
128
+ - task:
129
+ type: Clustering
130
+ dataset:
131
+ type: mteb/arxiv-clustering-s2s
132
+ name: MTEB ArxivClusteringS2S
133
+ config: default
134
+ split: test
135
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
136
+ metrics:
137
+ - type: v_measure
138
+ value: 36.01134479855804
139
+ - task:
140
+ type: Reranking
141
+ dataset:
142
+ type: mteb/askubuntudupquestions-reranking
143
+ name: MTEB AskUbuntuDupQuestions
144
+ config: default
145
+ split: test
146
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
147
+ metrics:
148
+ - type: map
149
+ value: 59.82917555338909
150
+ - type: mrr
151
+ value: 74.7888361254012
152
+ - task:
153
+ type: STS
154
+ dataset:
155
+ type: mteb/biosses-sts
156
+ name: MTEB BIOSSES
157
+ config: default
158
+ split: test
159
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
160
+ metrics:
161
+ - type: cos_sim_pearson
162
+ value: 87.1657730995964
163
+ - type: cos_sim_spearman
164
+ value: 86.62787748941281
165
+ - type: euclidean_pearson
166
+ value: 85.48127914481798
167
+ - type: euclidean_spearman
168
+ value: 86.48148861167424
169
+ - type: manhattan_pearson
170
+ value: 85.07496934780823
171
+ - type: manhattan_spearman
172
+ value: 86.39473964708843
173
+ - task:
174
+ type: Classification
175
+ dataset:
176
+ type: mteb/banking77
177
+ name: MTEB Banking77Classification
178
+ config: default
179
+ split: test
180
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
181
+ metrics:
182
+ - type: accuracy
183
+ value: 81.73051948051948
184
+ - type: f1
185
+ value: 81.66368364988331
186
+ - task:
187
+ type: Clustering
188
+ dataset:
189
+ type: mteb/biorxiv-clustering-p2p
190
+ name: MTEB BiorxivClusteringP2P
191
+ config: default
192
+ split: test
193
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
194
+ metrics:
195
+ - type: v_measure
196
+ value: 39.18623707448217
197
+ - task:
198
+ type: Clustering
199
+ dataset:
200
+ type: mteb/biorxiv-clustering-s2s
201
+ name: MTEB BiorxivClusteringS2S
202
+ config: default
203
+ split: test
204
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
205
+ metrics:
206
+ - type: v_measure
207
+ value: 32.12697757150375
208
+ - task:
209
+ type: Retrieval
210
+ dataset:
211
+ type: BeIR/cqadupstack
212
+ name: MTEB CQADupstackAndroidRetrieval
213
+ config: default
214
+ split: test
215
+ revision: None
216
+ metrics:
217
+ - type: map_at_1
218
+ value: 29.160000000000004
219
+ - type: map_at_10
220
+ value: 40.474
221
+ - type: map_at_100
222
+ value: 41.905
223
+ - type: map_at_1000
224
+ value: 42.041000000000004
225
+ - type: map_at_3
226
+ value: 37.147000000000006
227
+ - type: map_at_5
228
+ value: 38.873999999999995
229
+ - type: mrr_at_1
230
+ value: 36.91
231
+ - type: mrr_at_10
232
+ value: 46.495999999999995
233
+ - type: mrr_at_100
234
+ value: 47.288000000000004
235
+ - type: mrr_at_1000
236
+ value: 47.339999999999996
237
+ - type: mrr_at_3
238
+ value: 43.777
239
+ - type: mrr_at_5
240
+ value: 45.257999999999996
241
+ - type: ndcg_at_1
242
+ value: 36.91
243
+ - type: ndcg_at_10
244
+ value: 46.722
245
+ - type: ndcg_at_100
246
+ value: 51.969
247
+ - type: ndcg_at_1000
248
+ value: 54.232
249
+ - type: ndcg_at_3
250
+ value: 41.783
251
+ - type: ndcg_at_5
252
+ value: 43.797000000000004
253
+ - type: precision_at_1
254
+ value: 36.91
255
+ - type: precision_at_10
256
+ value: 9.013
257
+ - type: precision_at_100
258
+ value: 1.455
259
+ - type: precision_at_1000
260
+ value: 0.193
261
+ - type: precision_at_3
262
+ value: 20.124
263
+ - type: precision_at_5
264
+ value: 14.363000000000001
265
+ - type: recall_at_1
266
+ value: 29.160000000000004
267
+ - type: recall_at_10
268
+ value: 58.521
269
+ - type: recall_at_100
270
+ value: 80.323
271
+ - type: recall_at_1000
272
+ value: 95.13000000000001
273
+ - type: recall_at_3
274
+ value: 44.205
275
+ - type: recall_at_5
276
+ value: 49.97
277
+ - task:
278
+ type: Retrieval
279
+ dataset:
280
+ type: BeIR/cqadupstack
281
+ name: MTEB CQADupstackEnglishRetrieval
282
+ config: default
283
+ split: test
284
+ revision: None
285
+ metrics:
286
+ - type: map_at_1
287
+ value: 27.750000000000004
288
+ - type: map_at_10
289
+ value: 36.39
290
+ - type: map_at_100
291
+ value: 37.5
292
+ - type: map_at_1000
293
+ value: 37.625
294
+ - type: map_at_3
295
+ value: 33.853
296
+ - type: map_at_5
297
+ value: 35.397
298
+ - type: mrr_at_1
299
+ value: 34.14
300
+ - type: mrr_at_10
301
+ value: 41.841
302
+ - type: mrr_at_100
303
+ value: 42.469
304
+ - type: mrr_at_1000
305
+ value: 42.521
306
+ - type: mrr_at_3
307
+ value: 39.724
308
+ - type: mrr_at_5
309
+ value: 40.955999999999996
310
+ - type: ndcg_at_1
311
+ value: 34.14
312
+ - type: ndcg_at_10
313
+ value: 41.409
314
+ - type: ndcg_at_100
315
+ value: 45.668
316
+ - type: ndcg_at_1000
317
+ value: 47.916
318
+ - type: ndcg_at_3
319
+ value: 37.836
320
+ - type: ndcg_at_5
321
+ value: 39.650999999999996
322
+ - type: precision_at_1
323
+ value: 34.14
324
+ - type: precision_at_10
325
+ value: 7.739
326
+ - type: precision_at_100
327
+ value: 1.2630000000000001
328
+ - type: precision_at_1000
329
+ value: 0.173
330
+ - type: precision_at_3
331
+ value: 18.217
332
+ - type: precision_at_5
333
+ value: 12.854
334
+ - type: recall_at_1
335
+ value: 27.750000000000004
336
+ - type: recall_at_10
337
+ value: 49.882
338
+ - type: recall_at_100
339
+ value: 68.556
340
+ - type: recall_at_1000
341
+ value: 83.186
342
+ - type: recall_at_3
343
+ value: 39.047
344
+ - type: recall_at_5
345
+ value: 44.458
346
+ - task:
347
+ type: Retrieval
348
+ dataset:
349
+ type: BeIR/cqadupstack
350
+ name: MTEB CQADupstackGamingRetrieval
351
+ config: default
352
+ split: test
353
+ revision: None
354
+ metrics:
355
+ - type: map_at_1
356
+ value: 36.879
357
+ - type: map_at_10
358
+ value: 48.878
359
+ - type: map_at_100
360
+ value: 49.918
361
+ - type: map_at_1000
362
+ value: 49.978
363
+ - type: map_at_3
364
+ value: 45.867999999999995
365
+ - type: map_at_5
366
+ value: 47.637
367
+ - type: mrr_at_1
368
+ value: 42.696
369
+ - type: mrr_at_10
370
+ value: 52.342
371
+ - type: mrr_at_100
372
+ value: 53.044000000000004
373
+ - type: mrr_at_1000
374
+ value: 53.077
375
+ - type: mrr_at_3
376
+ value: 50.01
377
+ - type: mrr_at_5
378
+ value: 51.437
379
+ - type: ndcg_at_1
380
+ value: 42.696
381
+ - type: ndcg_at_10
382
+ value: 54.469
383
+ - type: ndcg_at_100
384
+ value: 58.664
385
+ - type: ndcg_at_1000
386
+ value: 59.951
387
+ - type: ndcg_at_3
388
+ value: 49.419999999999995
389
+ - type: ndcg_at_5
390
+ value: 52.007000000000005
391
+ - type: precision_at_1
392
+ value: 42.696
393
+ - type: precision_at_10
394
+ value: 8.734
395
+ - type: precision_at_100
396
+ value: 1.1769999999999998
397
+ - type: precision_at_1000
398
+ value: 0.133
399
+ - type: precision_at_3
400
+ value: 22.027
401
+ - type: precision_at_5
402
+ value: 15.135000000000002
403
+ - type: recall_at_1
404
+ value: 36.879
405
+ - type: recall_at_10
406
+ value: 67.669
407
+ - type: recall_at_100
408
+ value: 85.822
409
+ - type: recall_at_1000
410
+ value: 95.092
411
+ - type: recall_at_3
412
+ value: 54.157999999999994
413
+ - type: recall_at_5
414
+ value: 60.436
415
+ - task:
416
+ type: Retrieval
417
+ dataset:
418
+ type: BeIR/cqadupstack
419
+ name: MTEB CQADupstackGisRetrieval
420
+ config: default
421
+ split: test
422
+ revision: None
423
+ metrics:
424
+ - type: map_at_1
425
+ value: 22.942
426
+ - type: map_at_10
427
+ value: 31.741999999999997
428
+ - type: map_at_100
429
+ value: 32.721000000000004
430
+ - type: map_at_1000
431
+ value: 32.809
432
+ - type: map_at_3
433
+ value: 29.17
434
+ - type: map_at_5
435
+ value: 30.714000000000002
436
+ - type: mrr_at_1
437
+ value: 24.746000000000002
438
+ - type: mrr_at_10
439
+ value: 33.517
440
+ - type: mrr_at_100
441
+ value: 34.451
442
+ - type: mrr_at_1000
443
+ value: 34.522000000000006
444
+ - type: mrr_at_3
445
+ value: 31.148999999999997
446
+ - type: mrr_at_5
447
+ value: 32.606
448
+ - type: ndcg_at_1
449
+ value: 24.746000000000002
450
+ - type: ndcg_at_10
451
+ value: 36.553000000000004
452
+ - type: ndcg_at_100
453
+ value: 41.53
454
+ - type: ndcg_at_1000
455
+ value: 43.811
456
+ - type: ndcg_at_3
457
+ value: 31.674000000000003
458
+ - type: ndcg_at_5
459
+ value: 34.241
460
+ - type: precision_at_1
461
+ value: 24.746000000000002
462
+ - type: precision_at_10
463
+ value: 5.684
464
+ - type: precision_at_100
465
+ value: 0.859
466
+ - type: precision_at_1000
467
+ value: 0.109
468
+ - type: precision_at_3
469
+ value: 13.597000000000001
470
+ - type: precision_at_5
471
+ value: 9.672
472
+ - type: recall_at_1
473
+ value: 22.942
474
+ - type: recall_at_10
475
+ value: 49.58
476
+ - type: recall_at_100
477
+ value: 72.614
478
+ - type: recall_at_1000
479
+ value: 89.89200000000001
480
+ - type: recall_at_3
481
+ value: 36.552
482
+ - type: recall_at_5
483
+ value: 42.702
484
+ - task:
485
+ type: Retrieval
486
+ dataset:
487
+ type: BeIR/cqadupstack
488
+ name: MTEB CQADupstackMathematicaRetrieval
489
+ config: default
490
+ split: test
491
+ revision: None
492
+ metrics:
493
+ - type: map_at_1
494
+ value: 15.345
495
+ - type: map_at_10
496
+ value: 22.428
497
+ - type: map_at_100
498
+ value: 23.756
499
+ - type: map_at_1000
500
+ value: 23.872
501
+ - type: map_at_3
502
+ value: 20.212
503
+ - type: map_at_5
504
+ value: 21.291
505
+ - type: mrr_at_1
506
+ value: 19.279
507
+ - type: mrr_at_10
508
+ value: 27.1
509
+ - type: mrr_at_100
510
+ value: 28.211000000000002
511
+ - type: mrr_at_1000
512
+ value: 28.279
513
+ - type: mrr_at_3
514
+ value: 24.813
515
+ - type: mrr_at_5
516
+ value: 25.889
517
+ - type: ndcg_at_1
518
+ value: 19.279
519
+ - type: ndcg_at_10
520
+ value: 27.36
521
+ - type: ndcg_at_100
522
+ value: 33.499
523
+ - type: ndcg_at_1000
524
+ value: 36.452
525
+ - type: ndcg_at_3
526
+ value: 23.233999999999998
527
+ - type: ndcg_at_5
528
+ value: 24.806
529
+ - type: precision_at_1
530
+ value: 19.279
531
+ - type: precision_at_10
532
+ value: 5.149
533
+ - type: precision_at_100
534
+ value: 0.938
535
+ - type: precision_at_1000
536
+ value: 0.133
537
+ - type: precision_at_3
538
+ value: 11.360000000000001
539
+ - type: precision_at_5
540
+ value: 8.035
541
+ - type: recall_at_1
542
+ value: 15.345
543
+ - type: recall_at_10
544
+ value: 37.974999999999994
545
+ - type: recall_at_100
546
+ value: 64.472
547
+ - type: recall_at_1000
548
+ value: 85.97200000000001
549
+ - type: recall_at_3
550
+ value: 26.203
551
+ - type: recall_at_5
552
+ value: 30.485
553
+ - task:
554
+ type: Retrieval
555
+ dataset:
556
+ type: BeIR/cqadupstack
557
+ name: MTEB CQADupstackPhysicsRetrieval
558
+ config: default
559
+ split: test
560
+ revision: None
561
+ metrics:
562
+ - type: map_at_1
563
+ value: 26.362000000000002
564
+ - type: map_at_10
565
+ value: 36.406
566
+ - type: map_at_100
567
+ value: 37.726
568
+ - type: map_at_1000
569
+ value: 37.84
570
+ - type: map_at_3
571
+ value: 33.425
572
+ - type: map_at_5
573
+ value: 35.043
574
+ - type: mrr_at_1
575
+ value: 32.146
576
+ - type: mrr_at_10
577
+ value: 41.674
578
+ - type: mrr_at_100
579
+ value: 42.478
580
+ - type: mrr_at_1000
581
+ value: 42.524
582
+ - type: mrr_at_3
583
+ value: 38.948
584
+ - type: mrr_at_5
585
+ value: 40.415
586
+ - type: ndcg_at_1
587
+ value: 32.146
588
+ - type: ndcg_at_10
589
+ value: 42.374
590
+ - type: ndcg_at_100
591
+ value: 47.919
592
+ - type: ndcg_at_1000
593
+ value: 50.013
594
+ - type: ndcg_at_3
595
+ value: 37.29
596
+ - type: ndcg_at_5
597
+ value: 39.531
598
+ - type: precision_at_1
599
+ value: 32.146
600
+ - type: precision_at_10
601
+ value: 7.767
602
+ - type: precision_at_100
603
+ value: 1.236
604
+ - type: precision_at_1000
605
+ value: 0.16
606
+ - type: precision_at_3
607
+ value: 17.965999999999998
608
+ - type: precision_at_5
609
+ value: 12.742999999999999
610
+ - type: recall_at_1
611
+ value: 26.362000000000002
612
+ - type: recall_at_10
613
+ value: 54.98800000000001
614
+ - type: recall_at_100
615
+ value: 78.50200000000001
616
+ - type: recall_at_1000
617
+ value: 92.146
618
+ - type: recall_at_3
619
+ value: 40.486
620
+ - type: recall_at_5
621
+ value: 46.236
622
+ - task:
623
+ type: Retrieval
624
+ dataset:
625
+ type: BeIR/cqadupstack
626
+ name: MTEB CQADupstackProgrammersRetrieval
627
+ config: default
628
+ split: test
629
+ revision: None
630
+ metrics:
631
+ - type: map_at_1
632
+ value: 24.417
633
+ - type: map_at_10
634
+ value: 33.161
635
+ - type: map_at_100
636
+ value: 34.357
637
+ - type: map_at_1000
638
+ value: 34.473
639
+ - type: map_at_3
640
+ value: 30.245
641
+ - type: map_at_5
642
+ value: 31.541999999999998
643
+ - type: mrr_at_1
644
+ value: 29.909000000000002
645
+ - type: mrr_at_10
646
+ value: 38.211
647
+ - type: mrr_at_100
648
+ value: 39.056999999999995
649
+ - type: mrr_at_1000
650
+ value: 39.114
651
+ - type: mrr_at_3
652
+ value: 35.769
653
+ - type: mrr_at_5
654
+ value: 36.922
655
+ - type: ndcg_at_1
656
+ value: 29.909000000000002
657
+ - type: ndcg_at_10
658
+ value: 38.694
659
+ - type: ndcg_at_100
660
+ value: 44.057
661
+ - type: ndcg_at_1000
662
+ value: 46.6
663
+ - type: ndcg_at_3
664
+ value: 33.822
665
+ - type: ndcg_at_5
666
+ value: 35.454
667
+ - type: precision_at_1
668
+ value: 29.909000000000002
669
+ - type: precision_at_10
670
+ value: 7.180000000000001
671
+ - type: precision_at_100
672
+ value: 1.153
673
+ - type: precision_at_1000
674
+ value: 0.155
675
+ - type: precision_at_3
676
+ value: 16.134
677
+ - type: precision_at_5
678
+ value: 11.256
679
+ - type: recall_at_1
680
+ value: 24.417
681
+ - type: recall_at_10
682
+ value: 50.260000000000005
683
+ - type: recall_at_100
684
+ value: 73.55699999999999
685
+ - type: recall_at_1000
686
+ value: 91.216
687
+ - type: recall_at_3
688
+ value: 35.971
689
+ - type: recall_at_5
690
+ value: 40.793
691
+ - task:
692
+ type: Retrieval
693
+ dataset:
694
+ type: BeIR/cqadupstack
695
+ name: MTEB CQADupstackRetrieval
696
+ config: default
697
+ split: test
698
+ revision: None
699
+ metrics:
700
+ - type: map_at_1
701
+ value: 24.266916666666663
702
+ - type: map_at_10
703
+ value: 32.75025
704
+ - type: map_at_100
705
+ value: 33.91341666666667
706
+ - type: map_at_1000
707
+ value: 34.031749999999995
708
+ - type: map_at_3
709
+ value: 30.166416666666674
710
+ - type: map_at_5
711
+ value: 31.577000000000005
712
+ - type: mrr_at_1
713
+ value: 28.828166666666664
714
+ - type: mrr_at_10
715
+ value: 36.80991666666667
716
+ - type: mrr_at_100
717
+ value: 37.67075
718
+ - type: mrr_at_1000
719
+ value: 37.733
720
+ - type: mrr_at_3
721
+ value: 34.513416666666664
722
+ - type: mrr_at_5
723
+ value: 35.788
724
+ - type: ndcg_at_1
725
+ value: 28.828166666666664
726
+ - type: ndcg_at_10
727
+ value: 37.796
728
+ - type: ndcg_at_100
729
+ value: 42.94783333333333
730
+ - type: ndcg_at_1000
731
+ value: 45.38908333333333
732
+ - type: ndcg_at_3
733
+ value: 33.374750000000006
734
+ - type: ndcg_at_5
735
+ value: 35.379666666666665
736
+ - type: precision_at_1
737
+ value: 28.828166666666664
738
+ - type: precision_at_10
739
+ value: 6.615749999999999
740
+ - type: precision_at_100
741
+ value: 1.0848333333333333
742
+ - type: precision_at_1000
743
+ value: 0.1484166666666667
744
+ - type: precision_at_3
745
+ value: 15.347833333333332
746
+ - type: precision_at_5
747
+ value: 10.848916666666666
748
+ - type: recall_at_1
749
+ value: 24.266916666666663
750
+ - type: recall_at_10
751
+ value: 48.73458333333333
752
+ - type: recall_at_100
753
+ value: 71.56341666666667
754
+ - type: recall_at_1000
755
+ value: 88.63091666666668
756
+ - type: recall_at_3
757
+ value: 36.31208333333333
758
+ - type: recall_at_5
759
+ value: 41.55633333333333
760
+ - task:
761
+ type: Retrieval
762
+ dataset:
763
+ type: BeIR/cqadupstack
764
+ name: MTEB CQADupstackStatsRetrieval
765
+ config: default
766
+ split: test
767
+ revision: None
768
+ metrics:
769
+ - type: map_at_1
770
+ value: 23.497
771
+ - type: map_at_10
772
+ value: 30.249
773
+ - type: map_at_100
774
+ value: 30.947000000000003
775
+ - type: map_at_1000
776
+ value: 31.049
777
+ - type: map_at_3
778
+ value: 28.188000000000002
779
+ - type: map_at_5
780
+ value: 29.332
781
+ - type: mrr_at_1
782
+ value: 26.687
783
+ - type: mrr_at_10
784
+ value: 33.182
785
+ - type: mrr_at_100
786
+ value: 33.794999999999995
787
+ - type: mrr_at_1000
788
+ value: 33.873
789
+ - type: mrr_at_3
790
+ value: 31.263
791
+ - type: mrr_at_5
792
+ value: 32.428000000000004
793
+ - type: ndcg_at_1
794
+ value: 26.687
795
+ - type: ndcg_at_10
796
+ value: 34.252
797
+ - type: ndcg_at_100
798
+ value: 38.083
799
+ - type: ndcg_at_1000
800
+ value: 40.682
801
+ - type: ndcg_at_3
802
+ value: 30.464999999999996
803
+ - type: ndcg_at_5
804
+ value: 32.282
805
+ - type: precision_at_1
806
+ value: 26.687
807
+ - type: precision_at_10
808
+ value: 5.2909999999999995
809
+ - type: precision_at_100
810
+ value: 0.788
811
+ - type: precision_at_1000
812
+ value: 0.109
813
+ - type: precision_at_3
814
+ value: 13.037
815
+ - type: precision_at_5
816
+ value: 9.049
817
+ - type: recall_at_1
818
+ value: 23.497
819
+ - type: recall_at_10
820
+ value: 43.813
821
+ - type: recall_at_100
822
+ value: 61.88399999999999
823
+ - type: recall_at_1000
824
+ value: 80.926
825
+ - type: recall_at_3
826
+ value: 33.332
827
+ - type: recall_at_5
828
+ value: 37.862
829
+ - task:
830
+ type: Retrieval
831
+ dataset:
832
+ type: BeIR/cqadupstack
833
+ name: MTEB CQADupstackTexRetrieval
834
+ config: default
835
+ split: test
836
+ revision: None
837
+ metrics:
838
+ - type: map_at_1
839
+ value: 16.073
840
+ - type: map_at_10
841
+ value: 22.705000000000002
842
+ - type: map_at_100
843
+ value: 23.703
844
+ - type: map_at_1000
845
+ value: 23.833
846
+ - type: map_at_3
847
+ value: 20.593
848
+ - type: map_at_5
849
+ value: 21.7
850
+ - type: mrr_at_1
851
+ value: 19.683
852
+ - type: mrr_at_10
853
+ value: 26.39
854
+ - type: mrr_at_100
855
+ value: 27.264
856
+ - type: mrr_at_1000
857
+ value: 27.349
858
+ - type: mrr_at_3
859
+ value: 24.409
860
+ - type: mrr_at_5
861
+ value: 25.474000000000004
862
+ - type: ndcg_at_1
863
+ value: 19.683
864
+ - type: ndcg_at_10
865
+ value: 27.014
866
+ - type: ndcg_at_100
867
+ value: 31.948
868
+ - type: ndcg_at_1000
869
+ value: 35.125
870
+ - type: ndcg_at_3
871
+ value: 23.225
872
+ - type: ndcg_at_5
873
+ value: 24.866
874
+ - type: precision_at_1
875
+ value: 19.683
876
+ - type: precision_at_10
877
+ value: 4.948
878
+ - type: precision_at_100
879
+ value: 0.876
880
+ - type: precision_at_1000
881
+ value: 0.133
882
+ - type: precision_at_3
883
+ value: 10.943
884
+ - type: precision_at_5
885
+ value: 7.86
886
+ - type: recall_at_1
887
+ value: 16.073
888
+ - type: recall_at_10
889
+ value: 36.283
890
+ - type: recall_at_100
891
+ value: 58.745999999999995
892
+ - type: recall_at_1000
893
+ value: 81.711
894
+ - type: recall_at_3
895
+ value: 25.637
896
+ - type: recall_at_5
897
+ value: 29.919
898
+ - task:
899
+ type: Retrieval
900
+ dataset:
901
+ type: BeIR/cqadupstack
902
+ name: MTEB CQADupstackUnixRetrieval
903
+ config: default
904
+ split: test
905
+ revision: None
906
+ metrics:
907
+ - type: map_at_1
908
+ value: 25.776
909
+ - type: map_at_10
910
+ value: 33.317
911
+ - type: map_at_100
912
+ value: 34.437
913
+ - type: map_at_1000
914
+ value: 34.54
915
+ - type: map_at_3
916
+ value: 30.706
917
+ - type: map_at_5
918
+ value: 32.202999999999996
919
+ - type: mrr_at_1
920
+ value: 30.224
921
+ - type: mrr_at_10
922
+ value: 37.34
923
+ - type: mrr_at_100
924
+ value: 38.268
925
+ - type: mrr_at_1000
926
+ value: 38.335
927
+ - type: mrr_at_3
928
+ value: 35.075
929
+ - type: mrr_at_5
930
+ value: 36.348
931
+ - type: ndcg_at_1
932
+ value: 30.224
933
+ - type: ndcg_at_10
934
+ value: 38.083
935
+ - type: ndcg_at_100
936
+ value: 43.413000000000004
937
+ - type: ndcg_at_1000
938
+ value: 45.856
939
+ - type: ndcg_at_3
940
+ value: 33.437
941
+ - type: ndcg_at_5
942
+ value: 35.661
943
+ - type: precision_at_1
944
+ value: 30.224
945
+ - type: precision_at_10
946
+ value: 6.1850000000000005
947
+ - type: precision_at_100
948
+ value: 1.0030000000000001
949
+ - type: precision_at_1000
950
+ value: 0.132
951
+ - type: precision_at_3
952
+ value: 14.646
953
+ - type: precision_at_5
954
+ value: 10.428999999999998
955
+ - type: recall_at_1
956
+ value: 25.776
957
+ - type: recall_at_10
958
+ value: 48.787000000000006
959
+ - type: recall_at_100
960
+ value: 72.04899999999999
961
+ - type: recall_at_1000
962
+ value: 89.339
963
+ - type: recall_at_3
964
+ value: 36.192
965
+ - type: recall_at_5
966
+ value: 41.665
967
+ - task:
968
+ type: Retrieval
969
+ dataset:
970
+ type: BeIR/cqadupstack
971
+ name: MTEB CQADupstackWebmastersRetrieval
972
+ config: default
973
+ split: test
974
+ revision: None
975
+ metrics:
976
+ - type: map_at_1
977
+ value: 23.156
978
+ - type: map_at_10
979
+ value: 30.886000000000003
980
+ - type: map_at_100
981
+ value: 32.551
982
+ - type: map_at_1000
983
+ value: 32.769
984
+ - type: map_at_3
985
+ value: 28.584
986
+ - type: map_at_5
987
+ value: 29.959999999999997
988
+ - type: mrr_at_1
989
+ value: 28.260999999999996
990
+ - type: mrr_at_10
991
+ value: 35.555
992
+ - type: mrr_at_100
993
+ value: 36.687
994
+ - type: mrr_at_1000
995
+ value: 36.742999999999995
996
+ - type: mrr_at_3
997
+ value: 33.531
998
+ - type: mrr_at_5
999
+ value: 34.717
1000
+ - type: ndcg_at_1
1001
+ value: 28.260999999999996
1002
+ - type: ndcg_at_10
1003
+ value: 36.036
1004
+ - type: ndcg_at_100
1005
+ value: 42.675000000000004
1006
+ - type: ndcg_at_1000
1007
+ value: 45.303
1008
+ - type: ndcg_at_3
1009
+ value: 32.449
1010
+ - type: ndcg_at_5
1011
+ value: 34.293
1012
+ - type: precision_at_1
1013
+ value: 28.260999999999996
1014
+ - type: precision_at_10
1015
+ value: 6.837999999999999
1016
+ - type: precision_at_100
1017
+ value: 1.4569999999999999
1018
+ - type: precision_at_1000
1019
+ value: 0.23500000000000001
1020
+ - type: precision_at_3
1021
+ value: 15.217
1022
+ - type: precision_at_5
1023
+ value: 11.028
1024
+ - type: recall_at_1
1025
+ value: 23.156
1026
+ - type: recall_at_10
1027
+ value: 45.251999999999995
1028
+ - type: recall_at_100
1029
+ value: 75.339
1030
+ - type: recall_at_1000
1031
+ value: 91.56
1032
+ - type: recall_at_3
1033
+ value: 34.701
1034
+ - type: recall_at_5
1035
+ value: 39.922999999999995
1036
+ - task:
1037
+ type: Retrieval
1038
+ dataset:
1039
+ type: BeIR/cqadupstack
1040
+ name: MTEB CQADupstackWordpressRetrieval
1041
+ config: default
1042
+ split: test
1043
+ revision: None
1044
+ metrics:
1045
+ - type: map_at_1
1046
+ value: 19.846
1047
+ - type: map_at_10
1048
+ value: 26.367
1049
+ - type: map_at_100
1050
+ value: 27.439999999999998
1051
+ - type: map_at_1000
1052
+ value: 27.552
1053
+ - type: map_at_3
1054
+ value: 24.006
1055
+ - type: map_at_5
1056
+ value: 25.230999999999998
1057
+ - type: mrr_at_1
1058
+ value: 21.257
1059
+ - type: mrr_at_10
1060
+ value: 28.071
1061
+ - type: mrr_at_100
1062
+ value: 29.037000000000003
1063
+ - type: mrr_at_1000
1064
+ value: 29.119
1065
+ - type: mrr_at_3
1066
+ value: 25.692999999999998
1067
+ - type: mrr_at_5
1068
+ value: 27.006000000000004
1069
+ - type: ndcg_at_1
1070
+ value: 21.257
1071
+ - type: ndcg_at_10
1072
+ value: 30.586000000000002
1073
+ - type: ndcg_at_100
1074
+ value: 35.949
1075
+ - type: ndcg_at_1000
1076
+ value: 38.728
1077
+ - type: ndcg_at_3
1078
+ value: 25.862000000000002
1079
+ - type: ndcg_at_5
1080
+ value: 27.967
1081
+ - type: precision_at_1
1082
+ value: 21.257
1083
+ - type: precision_at_10
1084
+ value: 4.861
1085
+ - type: precision_at_100
1086
+ value: 0.8130000000000001
1087
+ - type: precision_at_1000
1088
+ value: 0.116
1089
+ - type: precision_at_3
1090
+ value: 10.906
1091
+ - type: precision_at_5
1092
+ value: 7.763000000000001
1093
+ - type: recall_at_1
1094
+ value: 19.846
1095
+ - type: recall_at_10
1096
+ value: 41.805
1097
+ - type: recall_at_100
1098
+ value: 66.89699999999999
1099
+ - type: recall_at_1000
1100
+ value: 87.401
1101
+ - type: recall_at_3
1102
+ value: 29.261
1103
+ - type: recall_at_5
1104
+ value: 34.227000000000004
1105
+ - task:
1106
+ type: Retrieval
1107
+ dataset:
1108
+ type: climate-fever
1109
+ name: MTEB ClimateFEVER
1110
+ config: default
1111
+ split: test
1112
+ revision: None
1113
+ metrics:
1114
+ - type: map_at_1
1115
+ value: 10.333
1116
+ - type: map_at_10
1117
+ value: 17.14
1118
+ - type: map_at_100
1119
+ value: 18.878
1120
+ - type: map_at_1000
1121
+ value: 19.067
1122
+ - type: map_at_3
1123
+ value: 14.123
1124
+ - type: map_at_5
1125
+ value: 15.699
1126
+ - type: mrr_at_1
1127
+ value: 23.192
1128
+ - type: mrr_at_10
1129
+ value: 33.553
1130
+ - type: mrr_at_100
1131
+ value: 34.553
1132
+ - type: mrr_at_1000
1133
+ value: 34.603
1134
+ - type: mrr_at_3
1135
+ value: 29.848000000000003
1136
+ - type: mrr_at_5
1137
+ value: 32.18
1138
+ - type: ndcg_at_1
1139
+ value: 23.192
1140
+ - type: ndcg_at_10
1141
+ value: 24.707
1142
+ - type: ndcg_at_100
1143
+ value: 31.701
1144
+ - type: ndcg_at_1000
1145
+ value: 35.260999999999996
1146
+ - type: ndcg_at_3
1147
+ value: 19.492
1148
+ - type: ndcg_at_5
1149
+ value: 21.543
1150
+ - type: precision_at_1
1151
+ value: 23.192
1152
+ - type: precision_at_10
1153
+ value: 7.824000000000001
1154
+ - type: precision_at_100
1155
+ value: 1.52
1156
+ - type: precision_at_1000
1157
+ value: 0.218
1158
+ - type: precision_at_3
1159
+ value: 14.180000000000001
1160
+ - type: precision_at_5
1161
+ value: 11.530999999999999
1162
+ - type: recall_at_1
1163
+ value: 10.333
1164
+ - type: recall_at_10
1165
+ value: 30.142999999999997
1166
+ - type: recall_at_100
1167
+ value: 54.298
1168
+ - type: recall_at_1000
1169
+ value: 74.337
1170
+ - type: recall_at_3
1171
+ value: 17.602999999999998
1172
+ - type: recall_at_5
1173
+ value: 22.938
1174
+ - task:
1175
+ type: Retrieval
1176
+ dataset:
1177
+ type: dbpedia-entity
1178
+ name: MTEB DBPedia
1179
+ config: default
1180
+ split: test
1181
+ revision: None
1182
+ metrics:
1183
+ - type: map_at_1
1184
+ value: 8.03
1185
+ - type: map_at_10
1186
+ value: 17.345
1187
+ - type: map_at_100
1188
+ value: 23.462
1189
+ - type: map_at_1000
1190
+ value: 24.77
1191
+ - type: map_at_3
1192
+ value: 12.714
1193
+ - type: map_at_5
1194
+ value: 14.722
1195
+ - type: mrr_at_1
1196
+ value: 61.0
1197
+ - type: mrr_at_10
1198
+ value: 69.245
1199
+ - type: mrr_at_100
1200
+ value: 69.715
1201
+ - type: mrr_at_1000
1202
+ value: 69.719
1203
+ - type: mrr_at_3
1204
+ value: 67.583
1205
+ - type: mrr_at_5
1206
+ value: 68.521
1207
+ - type: ndcg_at_1
1208
+ value: 47.625
1209
+ - type: ndcg_at_10
1210
+ value: 35.973
1211
+ - type: ndcg_at_100
1212
+ value: 39.875
1213
+ - type: ndcg_at_1000
1214
+ value: 46.922000000000004
1215
+ - type: ndcg_at_3
1216
+ value: 40.574
1217
+ - type: ndcg_at_5
1218
+ value: 38.18
1219
+ - type: precision_at_1
1220
+ value: 61.0
1221
+ - type: precision_at_10
1222
+ value: 29.049999999999997
1223
+ - type: precision_at_100
1224
+ value: 8.828
1225
+ - type: precision_at_1000
1226
+ value: 1.8290000000000002
1227
+ - type: precision_at_3
1228
+ value: 45.333
1229
+ - type: precision_at_5
1230
+ value: 37.9
1231
+ - type: recall_at_1
1232
+ value: 8.03
1233
+ - type: recall_at_10
1234
+ value: 22.334
1235
+ - type: recall_at_100
1236
+ value: 45.919
1237
+ - type: recall_at_1000
1238
+ value: 68.822
1239
+ - type: recall_at_3
1240
+ value: 14.038999999999998
1241
+ - type: recall_at_5
1242
+ value: 17.118
1243
+ - task:
1244
+ type: Classification
1245
+ dataset:
1246
+ type: mteb/emotion
1247
+ name: MTEB EmotionClassification
1248
+ config: default
1249
+ split: test
1250
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1251
+ metrics:
1252
+ - type: accuracy
1253
+ value: 44.714999999999996
1254
+ - type: f1
1255
+ value: 39.83929362259356
1256
+ - task:
1257
+ type: Retrieval
1258
+ dataset:
1259
+ type: fever
1260
+ name: MTEB FEVER
1261
+ config: default
1262
+ split: test
1263
+ revision: None
1264
+ metrics:
1265
+ - type: map_at_1
1266
+ value: 52.242999999999995
1267
+ - type: map_at_10
1268
+ value: 64.087
1269
+ - type: map_at_100
1270
+ value: 64.549
1271
+ - type: map_at_1000
1272
+ value: 64.567
1273
+ - type: map_at_3
1274
+ value: 61.667
1275
+ - type: map_at_5
1276
+ value: 63.266
1277
+ - type: mrr_at_1
1278
+ value: 56.271
1279
+ - type: mrr_at_10
1280
+ value: 68.146
1281
+ - type: mrr_at_100
1282
+ value: 68.524
1283
+ - type: mrr_at_1000
1284
+ value: 68.53200000000001
1285
+ - type: mrr_at_3
1286
+ value: 65.869
1287
+ - type: mrr_at_5
1288
+ value: 67.37100000000001
1289
+ - type: ndcg_at_1
1290
+ value: 56.271
1291
+ - type: ndcg_at_10
1292
+ value: 70.109
1293
+ - type: ndcg_at_100
1294
+ value: 72.09
1295
+ - type: ndcg_at_1000
1296
+ value: 72.479
1297
+ - type: ndcg_at_3
1298
+ value: 65.559
1299
+ - type: ndcg_at_5
1300
+ value: 68.242
1301
+ - type: precision_at_1
1302
+ value: 56.271
1303
+ - type: precision_at_10
1304
+ value: 9.286999999999999
1305
+ - type: precision_at_100
1306
+ value: 1.039
1307
+ - type: precision_at_1000
1308
+ value: 0.109
1309
+ - type: precision_at_3
1310
+ value: 26.308
1311
+ - type: precision_at_5
1312
+ value: 17.291
1313
+ - type: recall_at_1
1314
+ value: 52.242999999999995
1315
+ - type: recall_at_10
1316
+ value: 84.71
1317
+ - type: recall_at_100
1318
+ value: 93.309
1319
+ - type: recall_at_1000
1320
+ value: 96.013
1321
+ - type: recall_at_3
1322
+ value: 72.554
1323
+ - type: recall_at_5
1324
+ value: 79.069
1325
+ - task:
1326
+ type: Retrieval
1327
+ dataset:
1328
+ type: fiqa
1329
+ name: MTEB FiQA2018
1330
+ config: default
1331
+ split: test
1332
+ revision: None
1333
+ metrics:
1334
+ - type: map_at_1
1335
+ value: 14.346
1336
+ - type: map_at_10
1337
+ value: 24.552
1338
+ - type: map_at_100
1339
+ value: 26.161
1340
+ - type: map_at_1000
1341
+ value: 26.345000000000002
1342
+ - type: map_at_3
1343
+ value: 21.208
1344
+ - type: map_at_5
1345
+ value: 22.959
1346
+ - type: mrr_at_1
1347
+ value: 29.166999999999998
1348
+ - type: mrr_at_10
1349
+ value: 38.182
1350
+ - type: mrr_at_100
1351
+ value: 39.22
1352
+ - type: mrr_at_1000
1353
+ value: 39.263
1354
+ - type: mrr_at_3
1355
+ value: 35.983
1356
+ - type: mrr_at_5
1357
+ value: 37.14
1358
+ - type: ndcg_at_1
1359
+ value: 29.166999999999998
1360
+ - type: ndcg_at_10
1361
+ value: 31.421
1362
+ - type: ndcg_at_100
1363
+ value: 38.129999999999995
1364
+ - type: ndcg_at_1000
1365
+ value: 41.569
1366
+ - type: ndcg_at_3
1367
+ value: 28.172000000000004
1368
+ - type: ndcg_at_5
1369
+ value: 29.029
1370
+ - type: precision_at_1
1371
+ value: 29.166999999999998
1372
+ - type: precision_at_10
1373
+ value: 8.997
1374
+ - type: precision_at_100
1375
+ value: 1.5709999999999997
1376
+ - type: precision_at_1000
1377
+ value: 0.22
1378
+ - type: precision_at_3
1379
+ value: 19.187
1380
+ - type: precision_at_5
1381
+ value: 13.980999999999998
1382
+ - type: recall_at_1
1383
+ value: 14.346
1384
+ - type: recall_at_10
1385
+ value: 37.963
1386
+ - type: recall_at_100
1387
+ value: 63.43299999999999
1388
+ - type: recall_at_1000
1389
+ value: 84.057
1390
+ - type: recall_at_3
1391
+ value: 26.119999999999997
1392
+ - type: recall_at_5
1393
+ value: 30.988
1394
+ - task:
1395
+ type: Retrieval
1396
+ dataset:
1397
+ type: hotpotqa
1398
+ name: MTEB HotpotQA
1399
+ config: default
1400
+ split: test
1401
+ revision: None
1402
+ metrics:
1403
+ - type: map_at_1
1404
+ value: 33.059
1405
+ - type: map_at_10
1406
+ value: 46.421
1407
+ - type: map_at_100
1408
+ value: 47.323
1409
+ - type: map_at_1000
1410
+ value: 47.403
1411
+ - type: map_at_3
1412
+ value: 43.553999999999995
1413
+ - type: map_at_5
1414
+ value: 45.283
1415
+ - type: mrr_at_1
1416
+ value: 66.117
1417
+ - type: mrr_at_10
1418
+ value: 73.10900000000001
1419
+ - type: mrr_at_100
1420
+ value: 73.444
1421
+ - type: mrr_at_1000
1422
+ value: 73.46000000000001
1423
+ - type: mrr_at_3
1424
+ value: 71.70400000000001
1425
+ - type: mrr_at_5
1426
+ value: 72.58099999999999
1427
+ - type: ndcg_at_1
1428
+ value: 66.117
1429
+ - type: ndcg_at_10
1430
+ value: 55.696999999999996
1431
+ - type: ndcg_at_100
1432
+ value: 59.167
1433
+ - type: ndcg_at_1000
1434
+ value: 60.809000000000005
1435
+ - type: ndcg_at_3
1436
+ value: 51.243
1437
+ - type: ndcg_at_5
1438
+ value: 53.627
1439
+ - type: precision_at_1
1440
+ value: 66.117
1441
+ - type: precision_at_10
1442
+ value: 11.538
1443
+ - type: precision_at_100
1444
+ value: 1.429
1445
+ - type: precision_at_1000
1446
+ value: 0.165
1447
+ - type: precision_at_3
1448
+ value: 31.861
1449
+ - type: precision_at_5
1450
+ value: 20.997
1451
+ - type: recall_at_1
1452
+ value: 33.059
1453
+ - type: recall_at_10
1454
+ value: 57.691
1455
+ - type: recall_at_100
1456
+ value: 71.458
1457
+ - type: recall_at_1000
1458
+ value: 82.35
1459
+ - type: recall_at_3
1460
+ value: 47.792
1461
+ - type: recall_at_5
1462
+ value: 52.492000000000004
1463
+ - task:
1464
+ type: Classification
1465
+ dataset:
1466
+ type: mteb/imdb
1467
+ name: MTEB ImdbClassification
1468
+ config: default
1469
+ split: test
1470
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1471
+ metrics:
1472
+ - type: accuracy
1473
+ value: 80.544
1474
+ - type: ap
1475
+ value: 74.69592367984956
1476
+ - type: f1
1477
+ value: 80.51138138449883
1478
+ - task:
1479
+ type: Retrieval
1480
+ dataset:
1481
+ type: msmarco
1482
+ name: MTEB MSMARCO
1483
+ config: default
1484
+ split: dev
1485
+ revision: None
1486
+ metrics:
1487
+ - type: map_at_1
1488
+ value: 17.095
1489
+ - type: map_at_10
1490
+ value: 28.038999999999998
1491
+ - type: map_at_100
1492
+ value: 29.246
1493
+ - type: map_at_1000
1494
+ value: 29.311
1495
+ - type: map_at_3
1496
+ value: 24.253
1497
+ - type: map_at_5
1498
+ value: 26.442
1499
+ - type: mrr_at_1
1500
+ value: 17.535999999999998
1501
+ - type: mrr_at_10
1502
+ value: 28.53
1503
+ - type: mrr_at_100
1504
+ value: 29.697000000000003
1505
+ - type: mrr_at_1000
1506
+ value: 29.755
1507
+ - type: mrr_at_3
1508
+ value: 24.779999999999998
1509
+ - type: mrr_at_5
1510
+ value: 26.942
1511
+ - type: ndcg_at_1
1512
+ value: 17.549999999999997
1513
+ - type: ndcg_at_10
1514
+ value: 34.514
1515
+ - type: ndcg_at_100
1516
+ value: 40.497
1517
+ - type: ndcg_at_1000
1518
+ value: 42.17
1519
+ - type: ndcg_at_3
1520
+ value: 26.764
1521
+ - type: ndcg_at_5
1522
+ value: 30.678
1523
+ - type: precision_at_1
1524
+ value: 17.549999999999997
1525
+ - type: precision_at_10
1526
+ value: 5.692
1527
+ - type: precision_at_100
1528
+ value: 0.8699999999999999
1529
+ - type: precision_at_1000
1530
+ value: 0.101
1531
+ - type: precision_at_3
1532
+ value: 11.562
1533
+ - type: precision_at_5
1534
+ value: 8.917
1535
+ - type: recall_at_1
1536
+ value: 17.095
1537
+ - type: recall_at_10
1538
+ value: 54.642
1539
+ - type: recall_at_100
1540
+ value: 82.652
1541
+ - type: recall_at_1000
1542
+ value: 95.555
1543
+ - type: recall_at_3
1544
+ value: 33.504
1545
+ - type: recall_at_5
1546
+ value: 42.925000000000004
1547
+ - task:
1548
+ type: Classification
1549
+ dataset:
1550
+ type: mteb/mtop_domain
1551
+ name: MTEB MTOPDomainClassification (en)
1552
+ config: en
1553
+ split: test
1554
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1555
+ metrics:
1556
+ - type: accuracy
1557
+ value: 91.75558595531236
1558
+ - type: f1
1559
+ value: 91.25979279648296
1560
+ - task:
1561
+ type: Classification
1562
+ dataset:
1563
+ type: mteb/mtop_intent
1564
+ name: MTEB MTOPIntentClassification (en)
1565
+ config: en
1566
+ split: test
1567
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1568
+ metrics:
1569
+ - type: accuracy
1570
+ value: 69.90424076607387
1571
+ - type: f1
1572
+ value: 52.067408707562244
1573
+ - task:
1574
+ type: Classification
1575
+ dataset:
1576
+ type: mteb/amazon_massive_intent
1577
+ name: MTEB MassiveIntentClassification (en)
1578
+ config: en
1579
+ split: test
1580
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1581
+ metrics:
1582
+ - type: accuracy
1583
+ value: 70.13449899125757
1584
+ - type: f1
1585
+ value: 67.62456762910598
1586
+ - task:
1587
+ type: Classification
1588
+ dataset:
1589
+ type: mteb/amazon_massive_scenario
1590
+ name: MTEB MassiveScenarioClassification (en)
1591
+ config: en
1592
+ split: test
1593
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1594
+ metrics:
1595
+ - type: accuracy
1596
+ value: 74.862138533961
1597
+ - type: f1
1598
+ value: 74.66457222091381
1599
+ - task:
1600
+ type: Clustering
1601
+ dataset:
1602
+ type: mteb/medrxiv-clustering-p2p
1603
+ name: MTEB MedrxivClusteringP2P
1604
+ config: default
1605
+ split: test
1606
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1607
+ metrics:
1608
+ - type: v_measure
1609
+ value: 34.10761942610792
1610
+ - task:
1611
+ type: Clustering
1612
+ dataset:
1613
+ type: mteb/medrxiv-clustering-s2s
1614
+ name: MTEB MedrxivClusteringS2S
1615
+ config: default
1616
+ split: test
1617
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1618
+ metrics:
1619
+ - type: v_measure
1620
+ value: 31.673172170578408
1621
+ - task:
1622
+ type: Reranking
1623
+ dataset:
1624
+ type: mteb/mind_small
1625
+ name: MTEB MindSmallReranking
1626
+ config: default
1627
+ split: test
1628
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1629
+ metrics:
1630
+ - type: map
1631
+ value: 32.058704977250315
1632
+ - type: mrr
1633
+ value: 33.24327760839221
1634
+ - task:
1635
+ type: Retrieval
1636
+ dataset:
1637
+ type: nfcorpus
1638
+ name: MTEB NFCorpus
1639
+ config: default
1640
+ split: test
1641
+ revision: None
1642
+ metrics:
1643
+ - type: map_at_1
1644
+ value: 5.163
1645
+ - type: map_at_10
1646
+ value: 11.652999999999999
1647
+ - type: map_at_100
1648
+ value: 14.849
1649
+ - type: map_at_1000
1650
+ value: 16.253999999999998
1651
+ - type: map_at_3
1652
+ value: 8.616999999999999
1653
+ - type: map_at_5
1654
+ value: 10.100000000000001
1655
+ - type: mrr_at_1
1656
+ value: 44.272
1657
+ - type: mrr_at_10
1658
+ value: 52.25
1659
+ - type: mrr_at_100
1660
+ value: 52.761
1661
+ - type: mrr_at_1000
1662
+ value: 52.811
1663
+ - type: mrr_at_3
1664
+ value: 50.31
1665
+ - type: mrr_at_5
1666
+ value: 51.347
1667
+ - type: ndcg_at_1
1668
+ value: 42.105
1669
+ - type: ndcg_at_10
1670
+ value: 32.044
1671
+ - type: ndcg_at_100
1672
+ value: 29.763
1673
+ - type: ndcg_at_1000
1674
+ value: 38.585
1675
+ - type: ndcg_at_3
1676
+ value: 36.868
1677
+ - type: ndcg_at_5
1678
+ value: 35.154999999999994
1679
+ - type: precision_at_1
1680
+ value: 43.653
1681
+ - type: precision_at_10
1682
+ value: 23.622
1683
+ - type: precision_at_100
1684
+ value: 7.7490000000000006
1685
+ - type: precision_at_1000
1686
+ value: 2.054
1687
+ - type: precision_at_3
1688
+ value: 34.262
1689
+ - type: precision_at_5
1690
+ value: 30.154999999999998
1691
+ - type: recall_at_1
1692
+ value: 5.163
1693
+ - type: recall_at_10
1694
+ value: 15.478
1695
+ - type: recall_at_100
1696
+ value: 30.424
1697
+ - type: recall_at_1000
1698
+ value: 62.67
1699
+ - type: recall_at_3
1700
+ value: 9.615
1701
+ - type: recall_at_5
1702
+ value: 12.369
1703
+ - task:
1704
+ type: Retrieval
1705
+ dataset:
1706
+ type: nq
1707
+ name: MTEB NQ
1708
+ config: default
1709
+ split: test
1710
+ revision: None
1711
+ metrics:
1712
+ - type: map_at_1
1713
+ value: 21.618000000000002
1714
+ - type: map_at_10
1715
+ value: 35.465
1716
+ - type: map_at_100
1717
+ value: 36.712
1718
+ - type: map_at_1000
1719
+ value: 36.757
1720
+ - type: map_at_3
1721
+ value: 31.189
1722
+ - type: map_at_5
1723
+ value: 33.537
1724
+ - type: mrr_at_1
1725
+ value: 24.305
1726
+ - type: mrr_at_10
1727
+ value: 37.653
1728
+ - type: mrr_at_100
1729
+ value: 38.662
1730
+ - type: mrr_at_1000
1731
+ value: 38.694
1732
+ - type: mrr_at_3
1733
+ value: 33.889
1734
+ - type: mrr_at_5
1735
+ value: 35.979
1736
+ - type: ndcg_at_1
1737
+ value: 24.305
1738
+ - type: ndcg_at_10
1739
+ value: 43.028
1740
+ - type: ndcg_at_100
1741
+ value: 48.653999999999996
1742
+ - type: ndcg_at_1000
1743
+ value: 49.733
1744
+ - type: ndcg_at_3
1745
+ value: 34.768
1746
+ - type: ndcg_at_5
1747
+ value: 38.753
1748
+ - type: precision_at_1
1749
+ value: 24.305
1750
+ - type: precision_at_10
1751
+ value: 7.59
1752
+ - type: precision_at_100
1753
+ value: 1.076
1754
+ - type: precision_at_1000
1755
+ value: 0.11800000000000001
1756
+ - type: precision_at_3
1757
+ value: 16.271
1758
+ - type: precision_at_5
1759
+ value: 12.068
1760
+ - type: recall_at_1
1761
+ value: 21.618000000000002
1762
+ - type: recall_at_10
1763
+ value: 63.977
1764
+ - type: recall_at_100
1765
+ value: 89.03999999999999
1766
+ - type: recall_at_1000
1767
+ value: 97.10600000000001
1768
+ - type: recall_at_3
1769
+ value: 42.422
1770
+ - type: recall_at_5
1771
+ value: 51.629000000000005
1772
+ - task:
1773
+ type: Retrieval
1774
+ dataset:
1775
+ type: quora
1776
+ name: MTEB QuoraRetrieval
1777
+ config: default
1778
+ split: test
1779
+ revision: None
1780
+ metrics:
1781
+ - type: map_at_1
1782
+ value: 69.405
1783
+ - type: map_at_10
1784
+ value: 83.05
1785
+ - type: map_at_100
1786
+ value: 83.684
1787
+ - type: map_at_1000
1788
+ value: 83.70400000000001
1789
+ - type: map_at_3
1790
+ value: 80.08800000000001
1791
+ - type: map_at_5
1792
+ value: 81.937
1793
+ - type: mrr_at_1
1794
+ value: 79.85
1795
+ - type: mrr_at_10
1796
+ value: 86.369
1797
+ - type: mrr_at_100
1798
+ value: 86.48599999999999
1799
+ - type: mrr_at_1000
1800
+ value: 86.48700000000001
1801
+ - type: mrr_at_3
1802
+ value: 85.315
1803
+ - type: mrr_at_5
1804
+ value: 86.044
1805
+ - type: ndcg_at_1
1806
+ value: 79.86999999999999
1807
+ - type: ndcg_at_10
1808
+ value: 87.04499999999999
1809
+ - type: ndcg_at_100
1810
+ value: 88.373
1811
+ - type: ndcg_at_1000
1812
+ value: 88.531
1813
+ - type: ndcg_at_3
1814
+ value: 84.04
1815
+ - type: ndcg_at_5
1816
+ value: 85.684
1817
+ - type: precision_at_1
1818
+ value: 79.86999999999999
1819
+ - type: precision_at_10
1820
+ value: 13.183
1821
+ - type: precision_at_100
1822
+ value: 1.51
1823
+ - type: precision_at_1000
1824
+ value: 0.156
1825
+ - type: precision_at_3
1826
+ value: 36.67
1827
+ - type: precision_at_5
1828
+ value: 24.12
1829
+ - type: recall_at_1
1830
+ value: 69.405
1831
+ - type: recall_at_10
1832
+ value: 94.634
1833
+ - type: recall_at_100
1834
+ value: 99.214
1835
+ - type: recall_at_1000
1836
+ value: 99.958
1837
+ - type: recall_at_3
1838
+ value: 85.992
1839
+ - type: recall_at_5
1840
+ value: 90.656
1841
+ - task:
1842
+ type: Clustering
1843
+ dataset:
1844
+ type: mteb/reddit-clustering
1845
+ name: MTEB RedditClustering
1846
+ config: default
1847
+ split: test
1848
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1849
+ metrics:
1850
+ - type: v_measure
1851
+ value: 50.191676323145465
1852
+ - task:
1853
+ type: Clustering
1854
+ dataset:
1855
+ type: mteb/reddit-clustering-p2p
1856
+ name: MTEB RedditClusteringP2P
1857
+ config: default
1858
+ split: test
1859
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1860
+ metrics:
1861
+ - type: v_measure
1862
+ value: 56.4874020363744
1863
+ - task:
1864
+ type: Retrieval
1865
+ dataset:
1866
+ type: scidocs
1867
+ name: MTEB SCIDOCS
1868
+ config: default
1869
+ split: test
1870
+ revision: None
1871
+ metrics:
1872
+ - type: map_at_1
1873
+ value: 4.228
1874
+ - type: map_at_10
1875
+ value: 11.245
1876
+ - type: map_at_100
1877
+ value: 13.353000000000002
1878
+ - type: map_at_1000
1879
+ value: 13.665
1880
+ - type: map_at_3
1881
+ value: 7.779999999999999
1882
+ - type: map_at_5
1883
+ value: 9.405
1884
+ - type: mrr_at_1
1885
+ value: 20.9
1886
+ - type: mrr_at_10
1887
+ value: 31.657999999999998
1888
+ - type: mrr_at_100
1889
+ value: 32.769999999999996
1890
+ - type: mrr_at_1000
1891
+ value: 32.833
1892
+ - type: mrr_at_3
1893
+ value: 28.333000000000002
1894
+ - type: mrr_at_5
1895
+ value: 30.043
1896
+ - type: ndcg_at_1
1897
+ value: 20.9
1898
+ - type: ndcg_at_10
1899
+ value: 19.073
1900
+ - type: ndcg_at_100
1901
+ value: 27.055
1902
+ - type: ndcg_at_1000
1903
+ value: 32.641
1904
+ - type: ndcg_at_3
1905
+ value: 17.483999999999998
1906
+ - type: ndcg_at_5
1907
+ value: 15.42
1908
+ - type: precision_at_1
1909
+ value: 20.9
1910
+ - type: precision_at_10
1911
+ value: 10.17
1912
+ - type: precision_at_100
1913
+ value: 2.162
1914
+ - type: precision_at_1000
1915
+ value: 0.35100000000000003
1916
+ - type: precision_at_3
1917
+ value: 16.467000000000002
1918
+ - type: precision_at_5
1919
+ value: 13.68
1920
+ - type: recall_at_1
1921
+ value: 4.228
1922
+ - type: recall_at_10
1923
+ value: 20.573
1924
+ - type: recall_at_100
1925
+ value: 43.887
1926
+ - type: recall_at_1000
1927
+ value: 71.22
1928
+ - type: recall_at_3
1929
+ value: 10.023
1930
+ - type: recall_at_5
1931
+ value: 13.873
1932
+ - task:
1933
+ type: STS
1934
+ dataset:
1935
+ type: mteb/sickr-sts
1936
+ name: MTEB SICK-R
1937
+ config: default
1938
+ split: test
1939
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1940
+ metrics:
1941
+ - type: cos_sim_pearson
1942
+ value: 82.77965135067481
1943
+ - type: cos_sim_spearman
1944
+ value: 75.85121335808076
1945
+ - type: euclidean_pearson
1946
+ value: 80.09115175262697
1947
+ - type: euclidean_spearman
1948
+ value: 75.72249155647123
1949
+ - type: manhattan_pearson
1950
+ value: 79.89723577351782
1951
+ - type: manhattan_spearman
1952
+ value: 75.49855259442387
1953
+ - task:
1954
+ type: STS
1955
+ dataset:
1956
+ type: mteb/sts12-sts
1957
+ name: MTEB STS12
1958
+ config: default
1959
+ split: test
1960
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1961
+ metrics:
1962
+ - type: cos_sim_pearson
1963
+ value: 80.46084116030949
1964
+ - type: cos_sim_spearman
1965
+ value: 72.57579204392951
1966
+ - type: euclidean_pearson
1967
+ value: 76.39020830763684
1968
+ - type: euclidean_spearman
1969
+ value: 72.3718627025895
1970
+ - type: manhattan_pearson
1971
+ value: 76.6148833027359
1972
+ - type: manhattan_spearman
1973
+ value: 72.57570008442319
1974
+ - task:
1975
+ type: STS
1976
+ dataset:
1977
+ type: mteb/sts13-sts
1978
+ name: MTEB STS13
1979
+ config: default
1980
+ split: test
1981
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1982
+ metrics:
1983
+ - type: cos_sim_pearson
1984
+ value: 80.43678068337017
1985
+ - type: cos_sim_spearman
1986
+ value: 82.38941154076062
1987
+ - type: euclidean_pearson
1988
+ value: 81.59260573633661
1989
+ - type: euclidean_spearman
1990
+ value: 82.31144262574114
1991
+ - type: manhattan_pearson
1992
+ value: 81.43266909137056
1993
+ - type: manhattan_spearman
1994
+ value: 82.14704293004861
1995
+ - task:
1996
+ type: STS
1997
+ dataset:
1998
+ type: mteb/sts14-sts
1999
+ name: MTEB STS14
2000
+ config: default
2001
+ split: test
2002
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2003
+ metrics:
2004
+ - type: cos_sim_pearson
2005
+ value: 80.73713431763163
2006
+ - type: cos_sim_spearman
2007
+ value: 77.97860512809388
2008
+ - type: euclidean_pearson
2009
+ value: 80.35755041527027
2010
+ - type: euclidean_spearman
2011
+ value: 78.021703511412
2012
+ - type: manhattan_pearson
2013
+ value: 80.24440317109162
2014
+ - type: manhattan_spearman
2015
+ value: 77.93165415697575
2016
+ - task:
2017
+ type: STS
2018
+ dataset:
2019
+ type: mteb/sts15-sts
2020
+ name: MTEB STS15
2021
+ config: default
2022
+ split: test
2023
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2024
+ metrics:
2025
+ - type: cos_sim_pearson
2026
+ value: 85.15111852351204
2027
+ - type: cos_sim_spearman
2028
+ value: 86.54032447238258
2029
+ - type: euclidean_pearson
2030
+ value: 86.14157021537433
2031
+ - type: euclidean_spearman
2032
+ value: 86.67537291929713
2033
+ - type: manhattan_pearson
2034
+ value: 86.081041854808
2035
+ - type: manhattan_spearman
2036
+ value: 86.61561701560558
2037
+ - task:
2038
+ type: STS
2039
+ dataset:
2040
+ type: mteb/sts16-sts
2041
+ name: MTEB STS16
2042
+ config: default
2043
+ split: test
2044
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2045
+ metrics:
2046
+ - type: cos_sim_pearson
2047
+ value: 81.34532445104026
2048
+ - type: cos_sim_spearman
2049
+ value: 83.31325001474116
2050
+ - type: euclidean_pearson
2051
+ value: 82.81892375201032
2052
+ - type: euclidean_spearman
2053
+ value: 83.4521695148055
2054
+ - type: manhattan_pearson
2055
+ value: 82.72503790526163
2056
+ - type: manhattan_spearman
2057
+ value: 83.37833652941349
2058
+ - task:
2059
+ type: STS
2060
+ dataset:
2061
+ type: mteb/sts17-crosslingual-sts
2062
+ name: MTEB STS17 (en-en)
2063
+ config: en-en
2064
+ split: test
2065
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2066
+ metrics:
2067
+ - type: cos_sim_pearson
2068
+ value: 87.25463453839801
2069
+ - type: cos_sim_spearman
2070
+ value: 88.27655263515948
2071
+ - type: euclidean_pearson
2072
+ value: 88.0248334411439
2073
+ - type: euclidean_spearman
2074
+ value: 88.18141448876868
2075
+ - type: manhattan_pearson
2076
+ value: 87.8080451127279
2077
+ - type: manhattan_spearman
2078
+ value: 88.01028114423058
2079
+ - task:
2080
+ type: STS
2081
+ dataset:
2082
+ type: mteb/sts22-crosslingual-sts
2083
+ name: MTEB STS22 (en)
2084
+ config: en
2085
+ split: test
2086
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2087
+ metrics:
2088
+ - type: cos_sim_pearson
2089
+ value: 63.57551045355218
2090
+ - type: cos_sim_spearman
2091
+ value: 66.67614095126629
2092
+ - type: euclidean_pearson
2093
+ value: 66.0787243112528
2094
+ - type: euclidean_spearman
2095
+ value: 66.83660560636939
2096
+ - type: manhattan_pearson
2097
+ value: 66.74684019662031
2098
+ - type: manhattan_spearman
2099
+ value: 67.11761598074368
2100
+ - task:
2101
+ type: STS
2102
+ dataset:
2103
+ type: mteb/stsbenchmark-sts
2104
+ name: MTEB STSBenchmark
2105
+ config: default
2106
+ split: test
2107
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2108
+ metrics:
2109
+ - type: cos_sim_pearson
2110
+ value: 83.70881496766829
2111
+ - type: cos_sim_spearman
2112
+ value: 84.37803542941634
2113
+ - type: euclidean_pearson
2114
+ value: 84.84501245857096
2115
+ - type: euclidean_spearman
2116
+ value: 84.47088079741476
2117
+ - type: manhattan_pearson
2118
+ value: 84.77244090794765
2119
+ - type: manhattan_spearman
2120
+ value: 84.43307343706205
2121
+ - task:
2122
+ type: Reranking
2123
+ dataset:
2124
+ type: mteb/scidocs-reranking
2125
+ name: MTEB SciDocsRR
2126
+ config: default
2127
+ split: test
2128
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2129
+ metrics:
2130
+ - type: map
2131
+ value: 81.53946254759089
2132
+ - type: mrr
2133
+ value: 94.68259953554072
2134
+ - task:
2135
+ type: Retrieval
2136
+ dataset:
2137
+ type: scifact
2138
+ name: MTEB SciFact
2139
+ config: default
2140
+ split: test
2141
+ revision: None
2142
+ metrics:
2143
+ - type: map_at_1
2144
+ value: 51.817
2145
+ - type: map_at_10
2146
+ value: 62.339999999999996
2147
+ - type: map_at_100
2148
+ value: 62.88
2149
+ - type: map_at_1000
2150
+ value: 62.909000000000006
2151
+ - type: map_at_3
2152
+ value: 59.004
2153
+ - type: map_at_5
2154
+ value: 60.906000000000006
2155
+ - type: mrr_at_1
2156
+ value: 54.333
2157
+ - type: mrr_at_10
2158
+ value: 63.649
2159
+ - type: mrr_at_100
2160
+ value: 64.01
2161
+ - type: mrr_at_1000
2162
+ value: 64.039
2163
+ - type: mrr_at_3
2164
+ value: 61.056
2165
+ - type: mrr_at_5
2166
+ value: 62.639
2167
+ - type: ndcg_at_1
2168
+ value: 54.333
2169
+ - type: ndcg_at_10
2170
+ value: 67.509
2171
+ - type: ndcg_at_100
2172
+ value: 69.69999999999999
2173
+ - type: ndcg_at_1000
2174
+ value: 70.613
2175
+ - type: ndcg_at_3
2176
+ value: 61.729
2177
+ - type: ndcg_at_5
2178
+ value: 64.696
2179
+ - type: precision_at_1
2180
+ value: 54.333
2181
+ - type: precision_at_10
2182
+ value: 9.2
2183
+ - type: precision_at_100
2184
+ value: 1.043
2185
+ - type: precision_at_1000
2186
+ value: 0.11199999999999999
2187
+ - type: precision_at_3
2188
+ value: 24.0
2189
+ - type: precision_at_5
2190
+ value: 16.2
2191
+ - type: recall_at_1
2192
+ value: 51.817
2193
+ - type: recall_at_10
2194
+ value: 82.056
2195
+ - type: recall_at_100
2196
+ value: 91.667
2197
+ - type: recall_at_1000
2198
+ value: 99.0
2199
+ - type: recall_at_3
2200
+ value: 66.717
2201
+ - type: recall_at_5
2202
+ value: 74.17200000000001
2203
+ - task:
2204
+ type: PairClassification
2205
+ dataset:
2206
+ type: mteb/sprintduplicatequestions-pairclassification
2207
+ name: MTEB SprintDuplicateQuestions
2208
+ config: default
2209
+ split: test
2210
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2211
+ metrics:
2212
+ - type: cos_sim_accuracy
2213
+ value: 99.82475247524752
2214
+ - type: cos_sim_ap
2215
+ value: 95.4781199603258
2216
+ - type: cos_sim_f1
2217
+ value: 91.16186693147964
2218
+ - type: cos_sim_precision
2219
+ value: 90.53254437869822
2220
+ - type: cos_sim_recall
2221
+ value: 91.8
2222
+ - type: dot_accuracy
2223
+ value: 99.75049504950495
2224
+ - type: dot_ap
2225
+ value: 93.05183539809457
2226
+ - type: dot_f1
2227
+ value: 87.31117824773412
2228
+ - type: dot_precision
2229
+ value: 87.93103448275862
2230
+ - type: dot_recall
2231
+ value: 86.7
2232
+ - type: euclidean_accuracy
2233
+ value: 99.82475247524752
2234
+ - type: euclidean_ap
2235
+ value: 95.38547978154382
2236
+ - type: euclidean_f1
2237
+ value: 91.16325511732403
2238
+ - type: euclidean_precision
2239
+ value: 91.02691924227318
2240
+ - type: euclidean_recall
2241
+ value: 91.3
2242
+ - type: manhattan_accuracy
2243
+ value: 99.82574257425742
2244
+ - type: manhattan_ap
2245
+ value: 95.47237521890308
2246
+ - type: manhattan_f1
2247
+ value: 91.27849355797821
2248
+ - type: manhattan_precision
2249
+ value: 90.47151277013754
2250
+ - type: manhattan_recall
2251
+ value: 92.10000000000001
2252
+ - type: max_accuracy
2253
+ value: 99.82574257425742
2254
+ - type: max_ap
2255
+ value: 95.4781199603258
2256
+ - type: max_f1
2257
+ value: 91.27849355797821
2258
+ - task:
2259
+ type: Clustering
2260
+ dataset:
2261
+ type: mteb/stackexchange-clustering
2262
+ name: MTEB StackExchangeClustering
2263
+ config: default
2264
+ split: test
2265
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2266
+ metrics:
2267
+ - type: v_measure
2268
+ value: 57.542169376331245
2269
+ - task:
2270
+ type: Clustering
2271
+ dataset:
2272
+ type: mteb/stackexchange-clustering-p2p
2273
+ name: MTEB StackExchangeClusteringP2P
2274
+ config: default
2275
+ split: test
2276
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2277
+ metrics:
2278
+ - type: v_measure
2279
+ value: 35.74399302634387
2280
+ - task:
2281
+ type: Reranking
2282
+ dataset:
2283
+ type: mteb/stackoverflowdupquestions-reranking
2284
+ name: MTEB StackOverflowDupQuestions
2285
+ config: default
2286
+ split: test
2287
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2288
+ metrics:
2289
+ - type: map
2290
+ value: 49.65076347632749
2291
+ - type: mrr
2292
+ value: 50.418099057804945
2293
+ - task:
2294
+ type: Summarization
2295
+ dataset:
2296
+ type: mteb/summeval
2297
+ name: MTEB SummEval
2298
+ config: default
2299
+ split: test
2300
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2301
+ metrics:
2302
+ - type: cos_sim_pearson
2303
+ value: 29.73997756592847
2304
+ - type: cos_sim_spearman
2305
+ value: 29.465208011593308
2306
+ - type: dot_pearson
2307
+ value: 24.83735342474541
2308
+ - type: dot_spearman
2309
+ value: 26.005180528584855
2310
+ - task:
2311
+ type: Retrieval
2312
+ dataset:
2313
+ type: trec-covid
2314
+ name: MTEB TRECCOVID
2315
+ config: default
2316
+ split: test
2317
+ revision: None
2318
+ metrics:
2319
+ - type: map_at_1
2320
+ value: 0.208
2321
+ - type: map_at_10
2322
+ value: 1.434
2323
+ - type: map_at_100
2324
+ value: 7.829
2325
+ - type: map_at_1000
2326
+ value: 19.807
2327
+ - type: map_at_3
2328
+ value: 0.549
2329
+ - type: map_at_5
2330
+ value: 0.8330000000000001
2331
+ - type: mrr_at_1
2332
+ value: 78.0
2333
+ - type: mrr_at_10
2334
+ value: 85.35199999999999
2335
+ - type: mrr_at_100
2336
+ value: 85.673
2337
+ - type: mrr_at_1000
2338
+ value: 85.673
2339
+ - type: mrr_at_3
2340
+ value: 84.667
2341
+ - type: mrr_at_5
2342
+ value: 85.06700000000001
2343
+ - type: ndcg_at_1
2344
+ value: 72.0
2345
+ - type: ndcg_at_10
2346
+ value: 59.214999999999996
2347
+ - type: ndcg_at_100
2348
+ value: 44.681
2349
+ - type: ndcg_at_1000
2350
+ value: 43.035000000000004
2351
+ - type: ndcg_at_3
2352
+ value: 66.53099999999999
2353
+ - type: ndcg_at_5
2354
+ value: 63.23
2355
+ - type: precision_at_1
2356
+ value: 78.0
2357
+ - type: precision_at_10
2358
+ value: 62.4
2359
+ - type: precision_at_100
2360
+ value: 45.76
2361
+ - type: precision_at_1000
2362
+ value: 19.05
2363
+ - type: precision_at_3
2364
+ value: 71.333
2365
+ - type: precision_at_5
2366
+ value: 67.2
2367
+ - type: recall_at_1
2368
+ value: 0.208
2369
+ - type: recall_at_10
2370
+ value: 1.6580000000000001
2371
+ - type: recall_at_100
2372
+ value: 11.324
2373
+ - type: recall_at_1000
2374
+ value: 41.537
2375
+ - type: recall_at_3
2376
+ value: 0.579
2377
+ - type: recall_at_5
2378
+ value: 0.8959999999999999
2379
+ - task:
2380
+ type: Retrieval
2381
+ dataset:
2382
+ type: webis-touche2020
2383
+ name: MTEB Touche2020
2384
+ config: default
2385
+ split: test
2386
+ revision: None
2387
+ metrics:
2388
+ - type: map_at_1
2389
+ value: 2.442
2390
+ - type: map_at_10
2391
+ value: 8.863
2392
+ - type: map_at_100
2393
+ value: 14.606
2394
+ - type: map_at_1000
2395
+ value: 16.258
2396
+ - type: map_at_3
2397
+ value: 4.396
2398
+ - type: map_at_5
2399
+ value: 6.199000000000001
2400
+ - type: mrr_at_1
2401
+ value: 30.612000000000002
2402
+ - type: mrr_at_10
2403
+ value: 43.492
2404
+ - type: mrr_at_100
2405
+ value: 44.557
2406
+ - type: mrr_at_1000
2407
+ value: 44.557
2408
+ - type: mrr_at_3
2409
+ value: 40.816
2410
+ - type: mrr_at_5
2411
+ value: 42.143
2412
+ - type: ndcg_at_1
2413
+ value: 25.509999999999998
2414
+ - type: ndcg_at_10
2415
+ value: 22.076
2416
+ - type: ndcg_at_100
2417
+ value: 34.098
2418
+ - type: ndcg_at_1000
2419
+ value: 46.265
2420
+ - type: ndcg_at_3
2421
+ value: 24.19
2422
+ - type: ndcg_at_5
2423
+ value: 23.474
2424
+ - type: precision_at_1
2425
+ value: 30.612000000000002
2426
+ - type: precision_at_10
2427
+ value: 19.796
2428
+ - type: precision_at_100
2429
+ value: 7.286
2430
+ - type: precision_at_1000
2431
+ value: 1.5310000000000001
2432
+ - type: precision_at_3
2433
+ value: 25.85
2434
+ - type: precision_at_5
2435
+ value: 24.490000000000002
2436
+ - type: recall_at_1
2437
+ value: 2.442
2438
+ - type: recall_at_10
2439
+ value: 15.012
2440
+ - type: recall_at_100
2441
+ value: 45.865
2442
+ - type: recall_at_1000
2443
+ value: 82.958
2444
+ - type: recall_at_3
2445
+ value: 5.731
2446
+ - type: recall_at_5
2447
+ value: 9.301
2448
+ - task:
2449
+ type: Classification
2450
+ dataset:
2451
+ type: mteb/toxic_conversations_50k
2452
+ name: MTEB ToxicConversationsClassification
2453
+ config: default
2454
+ split: test
2455
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2456
+ metrics:
2457
+ - type: accuracy
2458
+ value: 70.974
2459
+ - type: ap
2460
+ value: 14.534996211286682
2461
+ - type: f1
2462
+ value: 54.785946183399005
2463
+ - task:
2464
+ type: Classification
2465
+ dataset:
2466
+ type: mteb/tweet_sentiment_extraction
2467
+ name: MTEB TweetSentimentExtractionClassification
2468
+ config: default
2469
+ split: test
2470
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2471
+ metrics:
2472
+ - type: accuracy
2473
+ value: 58.56819468024901
2474
+ - type: f1
2475
+ value: 58.92391487111204
2476
+ - task:
2477
+ type: Clustering
2478
+ dataset:
2479
+ type: mteb/twentynewsgroups-clustering
2480
+ name: MTEB TwentyNewsgroupsClustering
2481
+ config: default
2482
+ split: test
2483
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2484
+ metrics:
2485
+ - type: v_measure
2486
+ value: 43.273202335218194
2487
+ - task:
2488
+ type: PairClassification
2489
+ dataset:
2490
+ type: mteb/twittersemeval2015-pairclassification
2491
+ name: MTEB TwitterSemEval2015
2492
+ config: default
2493
+ split: test
2494
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2495
+ metrics:
2496
+ - type: cos_sim_accuracy
2497
+ value: 84.37742146986946
2498
+ - type: cos_sim_ap
2499
+ value: 68.1684129575579
2500
+ - type: cos_sim_f1
2501
+ value: 64.93475108748189
2502
+ - type: cos_sim_precision
2503
+ value: 59.89745876058849
2504
+ - type: cos_sim_recall
2505
+ value: 70.89709762532982
2506
+ - type: dot_accuracy
2507
+ value: 80.49710913750968
2508
+ - type: dot_ap
2509
+ value: 54.699790073944186
2510
+ - type: dot_f1
2511
+ value: 54.45130013221684
2512
+ - type: dot_precision
2513
+ value: 46.74612183125236
2514
+ - type: dot_recall
2515
+ value: 65.19788918205805
2516
+ - type: euclidean_accuracy
2517
+ value: 84.5085533766466
2518
+ - type: euclidean_ap
2519
+ value: 68.38835695236224
2520
+ - type: euclidean_f1
2521
+ value: 65.3391121002694
2522
+ - type: euclidean_precision
2523
+ value: 58.75289656625237
2524
+ - type: euclidean_recall
2525
+ value: 73.58839050131925
2526
+ - type: manhattan_accuracy
2527
+ value: 84.40126363473803
2528
+ - type: manhattan_ap
2529
+ value: 68.09539181555348
2530
+ - type: manhattan_f1
2531
+ value: 64.99028182701653
2532
+ - type: manhattan_precision
2533
+ value: 60.22062134173795
2534
+ - type: manhattan_recall
2535
+ value: 70.58047493403694
2536
+ - type: max_accuracy
2537
+ value: 84.5085533766466
2538
+ - type: max_ap
2539
+ value: 68.38835695236224
2540
+ - type: max_f1
2541
+ value: 65.3391121002694
2542
+ - task:
2543
+ type: PairClassification
2544
+ dataset:
2545
+ type: mteb/twitterurlcorpus-pairclassification
2546
+ name: MTEB TwitterURLCorpus
2547
+ config: default
2548
+ split: test
2549
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2550
+ metrics:
2551
+ - type: cos_sim_accuracy
2552
+ value: 88.34167733923235
2553
+ - type: cos_sim_ap
2554
+ value: 84.84136381147736
2555
+ - type: cos_sim_f1
2556
+ value: 77.01434980904001
2557
+ - type: cos_sim_precision
2558
+ value: 74.27937915742794
2559
+ - type: cos_sim_recall
2560
+ value: 79.95842315983985
2561
+ - type: dot_accuracy
2562
+ value: 85.06422944075756
2563
+ - type: dot_ap
2564
+ value: 76.49446747522325
2565
+ - type: dot_f1
2566
+ value: 71.11606520830432
2567
+ - type: dot_precision
2568
+ value: 64.93638676844785
2569
+ - type: dot_recall
2570
+ value: 78.59562673236834
2571
+ - type: euclidean_accuracy
2572
+ value: 88.45810532852097
2573
+ - type: euclidean_ap
2574
+ value: 84.91526721863501
2575
+ - type: euclidean_f1
2576
+ value: 77.04399001750662
2577
+ - type: euclidean_precision
2578
+ value: 74.62298867162133
2579
+ - type: euclidean_recall
2580
+ value: 79.62734832152756
2581
+ - type: manhattan_accuracy
2582
+ value: 88.46004579500912
2583
+ - type: manhattan_ap
2584
+ value: 84.81590026238194
2585
+ - type: manhattan_f1
2586
+ value: 76.97804626491822
2587
+ - type: manhattan_precision
2588
+ value: 73.79237288135593
2589
+ - type: manhattan_recall
2590
+ value: 80.45118570988605
2591
+ - type: max_accuracy
2592
+ value: 88.46004579500912
2593
+ - type: max_ap
2594
+ value: 84.91526721863501
2595
+ - type: max_f1
2596
+ value: 77.04399001750662
2597
+
2598
+ pipeline_tag: sentence-similarity
2599
+ tags:
2600
+ - sentence-transformers
2601
+ - feature-extraction
2602
+ - sentence-similarity
2603
+ - transformers
2604
+ - mteb
2605
+
2606
+ ---
2607
+
2608
+ # {gte-tiny}
2609
+
2610
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
2611
+ It is distilled from `thenlper/gte-small`, with comparable (slightly worse) performance at around half the size.
2612
+
2613
+ <!--- Describe your model here -->
2614
+
2615
+ ## Usage (Sentence-Transformers)
2616
+
2617
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
2618
+
2619
+ ```
2620
+ pip install -U sentence-transformers
2621
+ ```
2622
+
2623
+ Then you can use the model like this:
2624
+
2625
+ ```python
2626
+ from sentence_transformers import SentenceTransformer
2627
+ sentences = ["This is an example sentence", "Each sentence is converted"]
2628
+
2629
+ model = SentenceTransformer('{MODEL_NAME}')
2630
+ embeddings = model.encode(sentences)
2631
+ print(embeddings)
2632
+ ```
2633
+
2634
+
2635
+
2636
+ ## Usage (HuggingFace Transformers)
2637
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
2638
+
2639
+ ```python
2640
+ from transformers import AutoTokenizer, AutoModel
2641
+ import torch
2642
+
2643
+
2644
+ #Mean Pooling - Take attention mask into account for correct averaging
2645
+ def mean_pooling(model_output, attention_mask):
2646
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
2647
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
2648
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
2649
+
2650
+
2651
+ # Sentences we want sentence embeddings for
2652
+ sentences = ['This is an example sentence', 'Each sentence is converted']
2653
+
2654
+ # Load model from HuggingFace Hub
2655
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
2656
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
2657
+
2658
+ # Tokenize sentences
2659
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2660
+
2661
+ # Compute token embeddings
2662
+ with torch.no_grad():
2663
+ model_output = model(**encoded_input)
2664
+
2665
+ # Perform pooling. In this case, mean pooling.
2666
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
2667
+
2668
+ print("Sentence embeddings:")
2669
+ print(sentence_embeddings)
2670
+ ```
2671
+
2672
+
2673
+
2674
+ ## Evaluation Results
2675
+
2676
+ <!--- Describe how your model was evaluated -->
2677
+
2678
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
2679
+
2680
+
2681
+
2682
+ ## Full Model Architecture
2683
+ ```
2684
+ SentenceTransformer(
2685
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
2686
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
2687
+ )
2688
+ ```
2689
+
2690
+ ## Citing & Authors
2691
+
2692
+ <!--- Describe where people can find more information -->
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "[CLS]": 101,
3
+ "[MASK]": 103,
4
+ "[PAD]": 0,
5
+ "[SEP]": 102,
6
+ "[UNK]": 100
7
+ }
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/andersonbcdefg_gte-tiny",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 30522,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.34.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.34.0",
5
+ "pytorch": "2.0.1+cu118"
6
+ }
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41282c37ddd19dbf7352fca3bafd3d187baffacd7231f3f0cd69b7525630e08d
3
+ size 45457576
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fe59be58a9ad68621795a500e02b6b04a12f194b823af9c4c292854f340274d
3
+ size 90387629
onnx/model_optimized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fba0969722a32dd34158bbfa30e85bd66d7c110fb74b3b7ecff07d4a2f7eed5e
3
+ size 90282120
onnx/model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceab9964bcdb19ad013a2fe44bc1ddb3657ab0af1f48cddc349014d6085762ca
3
+ size 22887653
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b4288c1825166bed706aeba0442bc949bf1e1a8294e61dd4531e6a2dcadd471
3
+ size 45479273
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "[PAD]",
4
+ "[UNK]",
5
+ "[CLS]",
6
+ "[SEP]",
7
+ "[MASK]"
8
+ ],
9
+ "cls_token": "[CLS]",
10
+ "mask_token": "[MASK]",
11
+ "pad_token": "[PAD]",
12
+ "sep_token": "[SEP]",
13
+ "unk_token": "[UNK]"
14
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [
45
+ "[PAD]",
46
+ "[UNK]",
47
+ "[CLS]",
48
+ "[SEP]",
49
+ "[MASK]"
50
+ ],
51
+ "clean_up_tokenization_spaces": true,
52
+ "cls_token": "[CLS]",
53
+ "do_basic_tokenize": true,
54
+ "do_lower_case": true,
55
+ "mask_token": "[MASK]",
56
+ "max_length": 128,
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "pad_to_multiple_of": null,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_type_id": 0,
62
+ "padding_side": "right",
63
+ "sep_token": "[SEP]",
64
+ "stride": 0,
65
+ "strip_accents": null,
66
+ "tokenize_chinese_chars": true,
67
+ "tokenizer_class": "BertTokenizer",
68
+ "truncation_side": "right",
69
+ "truncation_strategy": "longest_first",
70
+ "unk_token": "[UNK]"
71
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff