{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78066d78e950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78066d78e9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78066d78ea70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78066d78eb00>", "_build": "<function ActorCriticPolicy._build at 0x78066d78eb90>", "forward": "<function ActorCriticPolicy.forward at 0x78066d78ec20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78066d78ecb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78066d78ed40>", "_predict": "<function ActorCriticPolicy._predict at 0x78066d78edd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78066d78ee60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78066d78eef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78066d78ef80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780675f1b140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722762856088247572, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABphgL04CZU9bIIZPjQdtb5Ew1o72DqOPQAAAAAAAAAAM7dVPa5Vmrr+Sj05icxDNPoxZDrbZlq4AACAPwAAgD9zHX++1vcMP2lYgj4CoAa/2FIIvsQLMj4AAAAAAAAAAGYW8rw/cHk/uRC9vc2tZL88hs+8WY2NvAAAAAAAAAAATQhaPjgBZD8HS5s93bYevwjQbz7YmO28AAAAAAAAAACaXqI99jRHutzMsruqszO2gQ/fukJaozUAAIA/AAAAAJrP9Dyus4e6YVqVNty/1DFbzf466mKwtQAAgD8AAIA/zZDDPDgczj7+w3G8DP88v/9KNrxDIis8AAAAAAAAAADgPTM+g4e7Pi9dHL60c9m+yynDPfIxz70AAAAAAAAAAA3Whj0pgHi6ypobOJ6BFjMVpd86vB82twAAgD8AAIA/wMTfvSubHT9L3iG+vyIbv7wCKL4Iq9G9AAAAAAAAAADN3Eo9de8NPmCbILykrwW/I9W3Oz3TgL0AAAAAAAAAAM2Ajb1hMI4/SgMzvv48SL/QmH+9YyLavQAAAAAAAAAA7Q0nvvysSj6Eopk+5GYWv/en0Dz2l8w9AAAAAAAAAADTTwI+JCi5PycByD4TcLO+TA3wPYhNDz4AAAAAAAAAADOOrD3xOP09uqKpvQ2pvb4RDmA8oIuVvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFtEO/cnE6MAWyUS6aMAXSUR0CoVNE6cRUWdX2UKGgGR0BvNiXnhbW3aAdLp2gIR0CoVSfDUExJdX2UKGgGR0Bz0hufmLccaAdLrmgIR0CoVTQ5WBBidX2UKGgGR0BwlVU83dbgaAdLrWgIR0CoVUVn/T9bdX2UKGgGR0ByeQA+6iCbaAdL22gIR0CoVXZ5Z8rqdX2UKGgGR0ByKSAYpDu0aAdLvWgIR0CoVYNUn5SFdX2UKGgGR0BxIGNfgJkYaAdLzmgIR0CoVYNfw7T2dX2UKGgGR0BxWGtga3qiaAdLqGgIR0CoVbduP3i8dX2UKGgGR0ByBddt2s7uaAdLiWgIR0CoVeI6Kcd6dX2UKGgGR0BzlaY9gWrPaAdLyGgIR0CoVgorFwT/dX2UKGgGR0ByI3uqm0mdaAdLvGgIR0CoVgvpIMBqdX2UKGgGR0B0MKOyVv/BaAdLuGgIR0CoVlrdepn6dX2UKGgGR0Bz7tyMkyDaaAdLr2gIR0CoVmDTjNpudX2UKGgGR0BzFfUoa1kUaAdLtmgIR0CoVq7SApazdX2UKGgGR0Bw1+gf2bobaAdLoWgIR0CoVxxZuAI6dX2UKGgGR0BxVITakAPvaAdLq2gIR0CoVySP+4smdX2UKGgGR0Bz1+gte2NOaAdLsGgIR0CoV+JpWV/udX2UKGgGR0ByLlg8bJfZaAdLiWgIR0CoV+iHymQ9dX2UKGgGR0BySqIacZtOaAdLxmgIR0CoV+59d/rjdX2UKGgGR0BwvKKVII4VaAdLtWgIR0CoWAkJBw+/dX2UKGgGR0BzHEF0PpY+aAdLuWgIR0CoWDCf6Gg0dX2UKGgGR0BxU2XZ5AyEaAdLsGgIR0CoWFG2sq8UdX2UKGgGR0Byc2Mn7YTTaAdLuGgIR0CoWGWuPmxMdX2UKGgGR0B0CNjhDPWyaAdL42gIR0CoWTPRqoIfdX2UKGgGR0BxzR6po9LYaAdL0GgIR0CoWWZnctXgdX2UKGgGR0ByPI7fYSQHaAdLxWgIR0CoWW9Qfp2VdX2UKGgGR0ByGMCeVcD9aAdLy2gIR0CoWYZEDyOJdX2UKGgGR0BxslJPIn0DaAdLtWgIR0CoWZu2JBPbdX2UKGgGR0Bzb6/BWPtEaAdLv2gIR0CoWcN8eCCjdX2UKGgGR0BycTKfWcz7aAdLwGgIR0CoWjcXvYvndX2UKGgGR0BxPgpF1B+naAdLuGgIR0CoWnwn6VMVdX2UKGgGR0BwEnnGKhtcaAdLpmgIR0CoWvgjps42dX2UKGgGR0By74xO+IuXaAdL0mgIR0CoWvhfKISEdX2UKGgGR0BwUzkWAPNFaAdLp2gIR0CoWxj3225QdX2UKGgGR0BwSqwA2hqTaAdLsmgIR0CoWyrAYYR/dX2UKGgGR0Bv5LV8Ti84aAdLnGgIR0CoWzO9nK4hdX2UKGgGR0Bzg4/GEPDpaAdLymgIR0CoW667ulXSdX2UKGgGR0Byu69TP0I1aAdLpGgIR0CoXFk5yU9qdX2UKGgGR0Bylg6HTI/8aAdL5mgIR0CoXIJgTh5xdX2UKGgGR0BwgX8CPp6haAdLn2gIR0CoXIB/7SApdX2UKGgGR0BxZBIe5nUUaAdLmmgIR0CoXJtqgyuZdX2UKGgGR0ByHKTyJ9ApaAdL8GgIR0CoXOzdtVJddX2UKGgGR0BwrihZha1UaAdLq2gIR0CoXR7MPjGUdX2UKGgGR0BypUOd5IH1aAdLymgIR0CoXVPfCQ9zdX2UKGgGR0BwEB8kUsWgaAdLr2gIR0CoXbEKeCkHdX2UKGgGR0ByWxwjt5UtaAdL3mgIR0CoXdq77Kq5dX2UKGgGR0BxnK814xDcaAdLuWgIR0CoXgsWGh24dX2UKGgGR0ByiOIqLCN0aAdLs2gIR0CoXkgxSHdodX2UKGgGR0BzFZS0jTrnaAdLv2gIR0CoXnHGbTc7dX2UKGgGR0B0MMvduYQbaAdLt2gIR0CoXniKrJbMdX2UKGgGR0Byuof+0gKXaAdL5GgIR0CoXxDKPn0TdX2UKGgGR0BxmJ0KZ2IPaAdLn2gIR0CoXxeBpYcOdX2UKGgGR0Bx/ptJnQIEaAdLy2gIR0CoXxxmK64EdX2UKGgGR0B0AC7f51vEaAdL7mgIR0CoX0NpEhJRdX2UKGgGR0BxOluyeI2waAdLqWgIR0CoX835FgDzdX2UKGgGR0BzgDzJ6po9aAdLuWgIR0CoX+G9QGfPdX2UKGgGR0ByMgWykbgkaAdL1mgIR0CoX+8JUo8ZdX2UKGgGR0BzFYvcrRShaAdL52gIR0CoX/0bkwN9dX2UKGgGR0BxnXaPCEYgaAdLzmgIR0CoYA4+B6KMdX2UKGgGR0Bz9/XJ5mh/aAdL52gIR0CoYBviT+vRdX2UKGgGR0Bxbz114gRsaAdLsmgIR0CoYCyowVTKdX2UKGgGR0BxjxpqREF4aAdLtWgIR0CoYFBRIjGDdX2UKGgGR0Bx32bNKRMfaAdLh2gIR0CoYFIESuhcdX2UKGgGR0BwnszyjHn2aAdLn2gIR0CoYG4nOSntdX2UKGgGR0BwJolSjxkNaAdLoWgIR0CoYJXQ2MsIdX2UKGgGR0Bz80iA2AG0aAdL3GgIR0CoYPPJA+pwdX2UKGgGR0BwnWBmPHT7aAdLqWgIR0CoYUt0V8CxdX2UKGgGR0BvM2tGNJe3aAdLuGgIR0CoYa5sKsuGdX2UKGgGR0BxrkvIwM6SaAdLoGgIR0CoYeOiWVu8dX2UKGgGR0BwK+RigCfZaAdLmmgIR0CoYgFPi1iOdX2UKGgGR0Bw/AOXmeUZaAdL3mgIR0CoYgf4qPOqdX2UKGgGR0Bxyaois4kvaAdL4mgIR0CoYhqXfIjodX2UKGgGR0Bxt0bYK6WgaAdLsmgIR0CoYjVAiV0LdX2UKGgGR0ByeaiKziS8aAdLw2gIR0CoYp3meUY9dX2UKGgGR0Byor8k2P1daAdLrmgIR0CoYp4TK1XvdX2UKGgGR0Bxr2xJNCZ4aAdLzWgIR0CoYqH31zySdX2UKGgGR0BzoDUb1h9caAdLwWgIR0CoYrQPiDNAdX2UKGgGR0BzCNCE6DGtaAdL0GgIR0CoYtEnTiKjdX2UKGgGR0Bxj0+4b0e2aAdLwWgIR0CoYtvGhmGudX2UKGgGR0BvRxOLzf78aAdLm2gIR0CoY1jWkJrtdX2UKGgGR0B0E9T850bMaAdL2mgIR0CoY3PWxyGSdX2UKGgGR0BzuODOC5EuaAdL6WgIR0CoY3gn+hoNdX2UKGgGR0By6swnH/96aAdLw2gIR0CoY4ezUqhEdX2UKGgGR0BvaDRnezlcaAdLumgIR0CoZCAx8D0UdX2UKGgGR0Bv712JSBK+aAdLnWgIR0CoZCF8G9pRdX2UKGgGR0BzQeb1AZ88aAdLvGgIR0CoZFywwCbMdX2UKGgGR0BxUP9UCJXRaAdLuGgIR0CoZGglOXVtdX2UKGgGR0Bycv9xZMcqaAdLxmgIR0CoZKG2sq8UdX2UKGgGR0Bzoxyhi9ZiaAdLzWgIR0CoZO5T6zmfdX2UKGgGR0Bx5B+8XenAaAdLo2gIR0CoZQin5zo2dX2UKGgGR0Bzpp2yLQ5WaAdLs2gIR0CoZRQhwEQodX2UKGgGR0B0BEjlgc94aAdLu2gIR0CoZRiyIHkcdX2UKGgGR0Bx7eZYxL00aAdLw2gIR0CoZTTkQwsYdX2UKGgGR0B0Hzklu3tsaAdLymgIR0CoZU4jKPn0dX2UKGgGR0BxPTSuyNXHaAdLlGgIR0CoZV8UuctodX2UKGgGR0ByGHFsHjZMaAdLyWgIR0CoZXorWiDedX2UKGgGR0BwUem78Nx3aAdLqGgIR0CoZb42CNCJdX2UKGgGR0Bw0yJhvze5aAdLsGgIR0CoZeqS5iEydX2UKGgGR0Byz8pDu0CzaAdLuWgIR0CoZfNoJzDGdX2UKGgGR0Bwmqsp5NXYaAdLi2gIR0CoZf752yLRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |