Kirill Gelvan
commited on
Commit
·
455b203
1
Parent(s):
1f5f0c4
major update with code
Browse files
README.md
CHANGED
@@ -6,7 +6,9 @@ tags:
|
|
6 |
- mbart
|
7 |
inference:
|
8 |
parameters:
|
9 |
-
no_repeat_ngram_size: 4
|
|
|
|
|
10 |
datasets:
|
11 |
- IlyaGusev/gazeta
|
12 |
- samsum
|
@@ -44,3 +46,45 @@ model-index:
|
|
44 |
value: 28
|
45 |
---
|
46 |
### 📝 Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- mbart
|
7 |
inference:
|
8 |
parameters:
|
9 |
+
no_repeat_ngram_size: 4,
|
10 |
+
top_k : 0,
|
11 |
+
num_beams : 5,
|
12 |
datasets:
|
13 |
- IlyaGusev/gazeta
|
14 |
- samsum
|
|
|
46 |
value: 28
|
47 |
---
|
48 |
### 📝 Description
|
49 |
+
|
50 |
+
MBart for Russian summarization fine-tuned for **dialogues** summarization.
|
51 |
+
|
52 |
+
|
53 |
+
This model was firstly fine-tuned by [Ilya Gusev](https://hf.co/IlyaGusev) on [Gazeta dataset](https://huggingface.co/datasets/IlyaGusev/gazeta). We have **fine tuned** that model on [SamSum dataset]() **translated to Russian** using GoogleTranslateAPI.
|
54 |
+
|
55 |
+
⚠️ Due to specifics of the data Hosted inference API may not work properly ⚠️
|
56 |
+
|
57 |
+
🤗 Moreover! We have implemented a **! telegram bot [@summarization_bot](https://t.me/summarization_bot) !** with the inference of this model. Add it to the chat and get summaries instead of dozens spam messages! 🤗
|
58 |
+
|
59 |
+
|
60 |
+
### ❓ How to use with code
|
61 |
+
```python
|
62 |
+
from transformers import MBartTokenizer, MBartForConditionalGeneration
|
63 |
+
|
64 |
+
# Download model and tokenizer
|
65 |
+
model_name = "Kirili4ik/mbart_ruDialogSum"
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
67 |
+
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
68 |
+
model.eval()
|
69 |
+
|
70 |
+
article_text = "..."
|
71 |
+
|
72 |
+
input_ids = tokenizer(
|
73 |
+
[article_text],
|
74 |
+
max_length=600,
|
75 |
+
padding="max_length",
|
76 |
+
truncation=True,
|
77 |
+
return_tensors="pt",
|
78 |
+
)["input_ids"]
|
79 |
+
|
80 |
+
output_ids = model.generate(
|
81 |
+
input_ids=input_ids,
|
82 |
+
top_k=0,
|
83 |
+
num_beams=3,
|
84 |
+
no_repeat_ngram_size=3
|
85 |
+
)[0]
|
86 |
+
|
87 |
+
|
88 |
+
summary = tokenizer.decode(output_ids, skip_special_tokens=True)
|
89 |
+
print(summary)
|
90 |
+
```
|