{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa007ea2f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa007ea3010>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa007ea30a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa007ea3130>", "_build": "<function ActorCriticPolicy._build at 0x7fa007ea31c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa007ea3250>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa007ea32e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa007ea3370>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa007ea3400>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa007ea3490>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa007ea3520>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa007ea35b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa008042540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716973501966317964, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABT77xSKN+5fpI9tC5q3K/exxS7yjirMwAAgD8AAIA/Ks96vs9AHj8GNIw9/taxvieBO74rROs8AAAAAAAAAABNtpu9pMgUOkBtSzzt+HY9Mq7AO5bKBr4AAAAAAACAP7NaGr02Tlw9Df9ZPvKxQL6Ym94880BsPQAAAAAAAAAAgDsfPa8YAT+0LhC9HGPHvvEylb1gNGK8AAAAAAAAAADmhVm9e4WNvGaSODtqWuO96kr3PcZFlj4AAIA/AACAP/OeEL4c4KQ/S14jv3JX6L5cbNy9vIuZvgAAAAAAAAAAzfQIvBTYgLqdBRQzWl7rMEk14bpvGa6zAACAPwAAgD/zGpG9uHrXuxqtTjz8zpo8hBVbvcYsgz0AAIA/AACAP5qN5bwDdgq8njzNPRn2g739gbC82jp2vgAAgD8AAIA/ZgiovBxkNT3O6wC9PJWBvpCStr2lLyQ9AAAAAAAAAADmBjO9iLm2PpD80juPgrW+IZtlvZ0OazwAAAAAAAAAAOaarj3G/rU/Jr8GPzuPHb5Plys8utI3PgAAAAAAAAAAzRz0vCngBrpmiwy35o9ssUOTMDp7dyE2AACAPwAAgD9mFtQ6jzYuusohUDaasyoxvs5COoqLeLUAAIA/AACAP7PpIb3SspW7RuwmPsF4EDylPL48SYgBvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHUf20zCUKMAWyUTQoBjAF0lEdAkZ5MzVMEinV9lChoBkdAcK9eYD1XeWgHTSkBaAhHQJGxJQYUFjd1fZQoaAZHQHLddlmOEM9oB00lAWgIR0CRsyHp8neBdX2UKGgGR0BydrqOcUdraAdNDwFoCEdAkbRBL0z0pXV9lChoBkdAciejua4MF2gHTS8BaAhHQJG0pVR1oxp1fZQoaAZHQHC5Ddgv115oB004AWgIR0CRtciSJTESdX2UKGgGR0BwcqNtIkJKaAdNMwFoCEdAkbYAnMMZxnV9lChoBkdAXDh5D7ZWaWgHTegDaAhHQJG2LjZL7Gh1fZQoaAZHQG+WShi9ZidoB007AWgIR0CRtu8s+V1PdX2UKGgGR0BwPLE87p3YaAdNNwFoCEdAkbe3h86V+3V9lChoBkdAcOPEeyRjjWgHTUYBaAhHQJG4PBCUorp1fZQoaAZHQFQXWhRIjGFoB03oA2gIR0CRuQb/ffoBdX2UKGgGR0Bx36QKa5PNaAdNSQFoCEdAkbnQd4mkWXV9lChoBkdAcoXk30f5lGgHTT8BaAhHQJG6FXYDklx1fZQoaAZHQG3cI5o4+8poB00DAWgIR0CRunAT7EYPdX2UKGgGR0BxPOAlOXVtaAdNRAFoCEdAkbqeajN6gXV9lChoBkdAcVwUvwmVq2gHTUQBaAhHQJG7dEx7AtZ1fZQoaAZHQHMQSX+l0o1oB00VAWgIR0CRvFxagVXWdX2UKGgGR0Bx/l0dRzikaAdNHgFoCEdAkb189fTkQ3V9lChoBkdAcv9LRKHwgGgHTQ0BaAhHQJG+LmDDjzZ1fZQoaAZHQHCll2eQMhJoB006AWgIR0CRvt3vQWvbdX2UKGgGR0BwkRQMx46faAdNFwFoCEdAkcAjPrv9cnV9lChoBkdAclJrH2h7FGgHTQUBaAhHQJHBEIv8IiV1fZQoaAZHQHLT70WdmQNoB00aAWgIR0CRwV32VVxTdX2UKGgGR0BwWN8ohIOIaAdNBAFoCEdAkcIs89wFT3V9lChoBkdAbED6qsEJSmgHTW8BaAhHQJHC6Z1FH8V1fZQoaAZHQHC98eS0Sh9oB02FAWgIR0CRxBJkGzKLdX2UKGgGR0ByP5c6eXiSaAdNIgFoCEdAkcSt9ph4MXV9lChoBkdAcNWQo1DSgGgHTRABaAhHQJHEy9K28Zl1fZQoaAZHQG4+Lv1DjR5oB007AWgIR0CRxyjLB9CvdX2UKGgGR0Bt/avgWJrMaAdNDAFoCEdAkcfMuvllsnV9lChoBkdAb2ffAKv3amgHTTwBaAhHQJHIllXiiqR1fZQoaAZHQHCPWZAprk9oB00IAWgIR0CRyUxsEaESdX2UKGgGR0Bwq2qR2bG4aAdL8WgIR0CRy+Yk3S8bdX2UKGgGR0BinWEytV7yaAdN6ANoCEdAkcve7QLNOnV9lChoBkdAcvbWEbo8p2gHTS8BaAhHQJHMfHggow51fZQoaAZHQG94EzO5avBoB01MAWgIR0CRzOnn+yZ8dX2UKGgGR0BzDo3rD63zaAdNJgFoCEdAkc3TUiILxHV9lChoBkdAcIpmfoRqXWgHTRoBaAhHQJHODWPLgXN1fZQoaAZHQHEt5UxVQyhoB00BAWgIR0CRzzGbTc7AdX2UKGgGR0Bw1qGIsRQKaAdNagFoCEdAkc9CSvC/GnV9lChoBkdAcTPuV5a/y2gHTTcBaAhHQJHPjqKP4mF1fZQoaAZHQG1W4s/Y8MdoB00WAWgIR0CRz7yQPqcFdX2UKGgGR0Bwwa1UlzEKaAdNJgFoCEdAkc/b+cYqG3V9lChoBkdAcJQZ2IO6NGgHS/9oCEdAkdIZRfnfVXV9lChoBkdAcvxA44p+dGgHTS8BaAhHQJHSG2fChvl1fZQoaAZHQHB+S1Vo6CFoB00wAWgIR0CR0pgSeyzHdX2UKGgGR0BvQ1hTfixWaAdNLQFoCEdAkdMDdtVJc3V9lChoBkdAcE2BGhEjPmgHTRoBaAhHQJHU9cmjTKF1fZQoaAZHQG4icw5/9YRoB00OAWgIR0CR1TQwblzVdX2UKGgGR0Bwo1aHKwIMaAdNLQFoCEdAkdWf9YOlPHV9lChoBkdAb0jSR8twrGgHTR8BaAhHQJHWJMYdhiN1fZQoaAZHQHDtRH5JsftoB00eAWgIR0CR6ORdQfp2dX2UKGgGR0Bu8STB68g7aAdNSAFoCEdAkeq1JpWV/3V9lChoBkdAcJ9irT6SDGgHTUIBaAhHQJHsSuNgjQl1fZQoaAZHQGv0znJT2nNoB01OAWgIR0CR7QIHkcS5dX2UKGgGR0Bwjj1qWTouaAdNTwFoCEdAke0zz7MxGnV9lChoBkdAcDSYl6Z6U2gHS/1oCEdAke2NuDSPVHV9lChoBkdAb9InCwbEP2gHTRkBaAhHQJHuCFQEZBN1fZQoaAZHQHDCwPy08eVoB00jAWgIR0CR72uOCGvfdX2UKGgGR0BvNngrH2h7aAdNsgFoCEdAkfAT0QK8c3V9lChoBkdAb4P5ZbILgGgHTboBaAhHQJHwSrgflp51fZQoaAZHQHEhwV9F4LVoB00IAWgIR0CR8F6e5Fw2dX2UKGgGR0BwLHvAoG6gaAdL7GgIR0CR8KJgLJCCdX2UKGgGR0BfBWVeKKpDaAdN6ANoCEdAkfDJhz/6wnV9lChoBkdAcXFaZx7zCmgHTW0BaAhHQJHw1wn6VMV1fZQoaAZHQHAGfkzXSShoB00xAWgIR0CR8aRkEs8QdX2UKGgGR0Bwh+ZYxL00aAdNAQFoCEdAkfHdl/Yra3V9lChoBkdAbu1Grjo6jmgHTRoBaAhHQJH0SRYA80V1fZQoaAZHQHAXSjtXxONoB00nAWgIR0CR9sLMcIZ7dX2UKGgGR0Byn2iyprDZaAdNtAFoCEdAkfcXnIQvpXV9lChoBkdAbnNev6j322gHTRwBaAhHQJH3FwdbPhR1fZQoaAZHQHNmSpJf6XVoB00UAWgIR0CR98MrEtNBdX2UKGgGR0BxVlq33HrAaAdNLgFoCEdAkff8F2V3U3V9lChoBkdAcuoIu5BkZ2gHS/9oCEdAkfiDAN5MUXV9lChoBkdAQGLpaA4GU2gHS9RoCEdAkfpxhc7henV9lChoBkdAb4ced07r9mgHTXABaAhHQJH7aTbFjut1fZQoaAZHQHCVLf+CK79oB00qAWgIR0CR++NeMQ2/dX2UKGgGR0BwwZJOFg2IaAdNIQFoCEdAkfwUnLJSznV9lChoBkdAcU7vJiiItWgHTUQBaAhHQJH9TovBacJ1fZQoaAZHQHANmbTc6/9oB01aAWgIR0CR/YYJ3PiUdX2UKGgGR0BxuOnhsImgaAdNTQFoCEdAkf4J9Vmz0HV9lChoBkdAbT2CV8kUsWgHTa8BaAhHQJIAxrSE12t1fZQoaAZHQHNEbj94u9RoB00cAWgIR0CSAiDg62fDdX2UKGgGR0ByXEuzyBkJaAdNEAFoCEdAkgKZjpcHGHV9lChoBkdAcF3ATqSowWgHTS8BaAhHQJIDGPRzBAR1fZQoaAZHQG95+qaPS2JoB00xAWgIR0CSBHTYNAkcdX2UKGgGR0Byv7Kq4pc5aAdNDQFoCEdAkgVcMiKR+3V9lChoBkdAczgNUfgaWGgHTTkBaAhHQJIGWXfIjnp1fZQoaAZHQHAauaScLBtoB01wAWgIR0CSBll67dzodX2UKGgGR0BuFwr6LwWnaAdNGwFoCEdAkgaDL8rI53V9lChoBkdAcH8925hBq2gHTSABaAhHQJIGhCWu5jJ1fZQoaAZHQHEffoicG1RoB00GAWgIR0CSBvEf1YhddX2UKGgGR0Bx/HUTcqOMaAdNKgJoCEdAkgcDgydnTXV9lChoBkdAcoN7+1jRUmgHTd4BaAhHQJIHM73fygB1fZQoaAZHQG36llCkXUJoB03gAWgIR0CSCSMPz4DcdX2UKGgGR0BwdOro4dZJaAdNTAFoCEdAkgljh1klNXV9lChoBkdAcQGOHFglW2gHTSgBaAhHQJIKur7wazh1fZQoaAZHQHA40mx+rlxoB0vqaAhHQJIM/s0HhS91fZQoaAZHQHKFsD0UXYVoB00sAWgIR0CSDSKm8/UwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |