{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fbb48790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fbb48820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fbb488b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fbb48940>", "_build": "<function ActorCriticPolicy._build at 0x7f32fbb489d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f32fbb48a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32fbb48af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fbb48b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32fbb48c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fbb48ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fbb48d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fbb48dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f32fbb40940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710058658386329806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZGJz7pfBM/YKQ9vvevpb6365Q9EHDZvQAAAAAAAAAAZihyPduQuT3q4bC9IS2MvowgbDw2XU69AAAAAAAAAACmh/Q9+wMTPx7UIr5G4aG+chwAvKHBE70AAAAAAAAAAJppL7zD+T66Xmmgupp0GrVzaYy7bnG8OQAAgD8AAIA/s6U8PsK2JT/yCIm+cUCxvl1TjT3mcPC9AAAAAAAAAAAaCH29y4/FPvY/oj0TfZ++3lKAvBFNjz0AAAAAAAAAAM2cATtxEeQ9xohePvy9fL6e1d89M2zvvQAAAAAAAAAA0z8LvjgPLz++fTQ+u2zTvsscgb3WQAo9AAAAAAAAAACD2Uy+OImjPklXgT6jKli+5QmEuZ/JzD0AAAAAAAAAAABkQ7zDESq65TxHM4FiPjCOZhW6osDFswAAgD8AAIA/AAB4urgu3rmds+K1QJfxsDS1ETsUEQY1AACAPwAAgD8Nlpa9AVSFP0xaIb4BF9S+e3bNvVENGzwAAAAAAAAAAGarxTwD1BE//eekvZBbub5YQDm8s2VivQAAAAAAAAAAGvmrPQ8aVz2j4wQ9GKeFvsnO4TxHsks9AAAAAAAAAABa4Fa+i2mBP7D3cb6yweK+Btdevsrjlj0AAAAAAAAAAE2Ng73X3Cy7lHCQO4Q9jTxzSrU85lpzvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGB1uBMBZKMAWyUTQgBjAF0lEdAlhooc3l0YHV9lChoBkdAbWutxuKoAGgHS/1oCEdAlhtw7DEWI3V9lChoBkdAbdXWpZOi4GgHTSUBaAhHQJYb/sVtXPt1fZQoaAZHQHHRcfzSThZoB00PAWgIR0CWHE5ggHNYdX2UKGgGR0BwlHFqBVdYaAdNIQFoCEdAlhys8kleGHV9lChoBkdAbj1fiPyTZGgHTYwBaAhHQJYc+vUz9CN1fZQoaAZHQHK830kGA09oB02gAWgIR0CWHc8Gs3hodX2UKGgGR0BxzRWyTpxFaAdNAAFoCEdAlh3gMH8jzXV9lChoBkdAcl7zOX3QD2gHTY8BaAhHQJYd6yJKraN1fZQoaAZHQHJQz+ee4CpoB00GAWgIR0CWH0v0yxiYdX2UKGgGR0BzCMHbAUL2aAdL+WgIR0CWH3WxhUiqdX2UKGgGR0ByN9VxS5y3aAdNDwFoCEdAliDbAHmig3V9lChoBkdAcBVxdIGyHGgHTS8BaAhHQJYg9r56+nJ1fZQoaAZHQHDoDT8YQ8RoB00SAWgIR0CWIVwAEMb4dX2UKGgGR0BvYRCv5gw5aAdNeAFoCEdAliNMWj4593V9lChoBkdAcOLr3j+72GgHS/hoCEdAliNWzfJmunV9lChoBkdAcDrzRQaaTmgHS/BoCEdAliPXOKO1fHV9lChoBkdAcGjJ2MbWE2gHTT4BaAhHQJYj6HYYixF1fZQoaAZHQHKy7M5fdARoB01yAWgIR0CWJCAqNIbwdX2UKGgGR0BwwfiuMdcTaAdNFwFoCEdAliSfK2a2F3V9lChoBkdAbYtSCvovBmgHTTMBaAhHQJYksQf6oEV1fZQoaAZHQG83A8bJfY1oB0v2aAhHQJYlMm7aqS51fZQoaAZHQG6byCe2/i5oB00vAWgIR0CWJclzEJjUdX2UKGgGR0Bx9NfzBhx6aAdNSgFoCEdAlidxf8dgfHV9lChoBkdAcupX1J17pmgHTRMBaAhHQJYnmltTDO11fZQoaAZHQHFZQbVBlc1oB013AWgIR0CWKNq//NqydX2UKGgGR0Bvpi5wwTM8aAdNVwFoCEdAlimsebNKRXV9lChoBkdAcO0fmLcbi2gHS/loCEdAlirfYao/A3V9lChoBkdAcRQoexOclWgHS/xoCEdAliuR37k4m3V9lChoBkdAbJ+ya/h2n2gHS/doCEdAlixyQYDT0HV9lChoBkdAcRpvK2a2F2gHTQ4BaAhHQJYsj30wrUd1fZQoaAZHQHDuAJgLJCBoB01lAWgIR0CWLKp/gBLgdX2UKGgGR0BwfNkH2RJVaAdNdwFoCEdAliy0/bCaZ3V9lChoBkdAcgECDVYp2GgHTXoBaAhHQJYs5D7ZWaN1fZQoaAZHQHMM8oDxLChoB00+AWgIR0CWLUG7BfrsdX2UKGgGR0BzIwYGdI5HaAdNHAFoCEdAli4hIe5nUXV9lChoBkdAbUJb3XZoPGgHTWABaAhHQJYupfmcOLB1fZQoaAZHQG9iAntv4udoB00rAWgIR0CWLzDTSb6QdX2UKGgGR0BxpadmQKa5aAdNAgFoCEdAli+q99MK1HV9lChoBkdAbD6y57PY4GgHTTQBaAhHQJYxTZcs1891fZQoaAZHQHLP/d/J/5NoB00PAWgIR0CWMhoOQQtjdX2UKGgGR0BxvWG34Kx+aAdNKQFoCEdAljIjWGyooHV9lChoBkdAbzWidJ8OTmgHTc0BaAhHQJYypB9kSVZ1fZQoaAZHQHKs8JhOP/9oB00BAWgIR0CWRweJpFkQdX2UKGgGR0BvEjPSlWOqaAdNEAFoCEdAlkdWCmMwUXV9lChoBkdAcRwxGlQ/HGgHTRoBaAhHQJZHi3/givB1fZQoaAZHQG4QYwh4dIZoB00GAWgIR0CWR6s2NvOydX2UKGgGR0BzE2ioKlYVaAdNTAFoCEdAlke8lkYoAnV9lChoBkdAcTR8FINEw2gHTScBaAhHQJZIBQhwEQp1fZQoaAZHQHIliTY/Vy5oB00CAWgIR0CWSHChvitJdX2UKGgGR0BxFc0xdpqRaAdNWwFoCEdAlkizvZyuIXV9lChoBkdAce5tx+8XemgHTQEBaAhHQJZI8bHZK4B1fZQoaAZHQHGVk65oXbdoB00MAWgIR0CWSbW8yvcKdX2UKGgGR0Bu0+tr9EThaAdNCQFoCEdAlkocny/bkHV9lChoBkdAby/bjcVQAWgHS/VoCEdAlkvWShakh3V9lChoBkdAbC6F2V3Ux2gHS/9oCEdAlkwcUAT7EnV9lChoBkdAcI+A7xNIsmgHTSwBaAhHQJZMriJfpll1fZQoaAZHQHL60H6dlNFoB005AWgIR0CWTn4QjD8+dX2UKGgGR0BuL7wKBun/aAdL/GgIR0CWTrWJ79hrdX2UKGgGR0ByMIV/MGHIaAdL3GgIR0CWTuDwpe/pdX2UKGgGR0ByfvFUADJVaAdL+GgIR0CWTuh99c8ldX2UKGgGR0BvE0gyM1jzaAdNGwJoCEdAlk78ox59mnV9lChoBkdAcdlwgkka/GgHTUQBaAhHQJZQpGI9C/p1fZQoaAZHQHOBm38XN1RoB00mAWgIR0CWUKrsSkCWdX2UKGgGR0Bwld8MNMGpaAdNFgFoCEdAllDxBqsU7HV9lChoBkdAcgGIYWLxZ2gHTUcBaAhHQJZRW6K+BYp1fZQoaAZHQHCEVyaNMoNoB00GAWgIR0CWUgbKzRhMdX2UKGgGR0BxDcMuvlltaAdNOAFoCEdAllIkhmoR7XV9lChoBkdAcNoJ8fFJhGgHTWoBaAhHQJZSM4EOiFl1fZQoaAZHQHEszm8ujAVoB00qAWgIR0CWUo6p5u63dX2UKGgGR0ByB2LuQZGbaAdL62gIR0CWUtqDK5kLdX2UKGgGR0BtcrqB3A2yaAdNAQFoCEdAllOPub7TD3V9lChoBkdAb+UVqveP72gHS+toCEdAllTxtUGVzXV9lChoBkdAcPKkxREWqWgHTSgBaAhHQJZVHlr/Khd1fZQoaAZHQHJ4761stTVoB0v1aAhHQJZViLuQZGd1fZQoaAZHQHHlqg/TsppoB00YAWgIR0CWVpnPmgandX2UKGgGR0BwUJKujh1laAdNKQFoCEdAllbfek56t3V9lChoBkdAbaO+zMRpUWgHTQkBaAhHQJZX2IznA7B1fZQoaAZHQHCYrGipNsZoB0vjaAhHQJZYWrU9ZA91fZQoaAZHQHGbAUcn3L5oB0voaAhHQJZYcx9G7SR1fZQoaAZHQHBGQm/nGKhoB00TAWgIR0CWWHqZtvXLdX2UKGgGR0BzJVCXyAhCaAdNHwFoCEdAlliUVafSQnV9lChoBkdAcGL6zVtoBmgHTWIBaAhHQJZYx0NjLB91fZQoaAZHQD2If9xZMcpoB0veaAhHQJZY+KekHlh1fZQoaAZHQHFwuk1uR9xoB00ZAWgIR0CWWZm03Ov/dX2UKGgGR0Bwlw12q1gIaAdNQwFoCEdAlloOQp4KQnV9lChoBkdAcueBHkLhJmgHS+9oCEdAllop8jRlYnV9lChoBkdAcbB3X7Lt/mgHS+ZoCEdAllvDYmLLp3V9lChoBkdAbxKUB4lhPWgHTX0BaAhHQJZcp/iHZbp1fZQoaAZHQHMbbiyY5T9oB00jAWgIR0CWXQmtQsPKdX2UKGgGR0ByxJLAYYR/aAdNKQFoCEdAll0OE7GNrHV9lChoBkdAcWTxTKkl/2gHTQoBaAhHQJZeH8Muvll1fZQoaAZHQHD+uk+HJtBoB00hAWgIR0CWXo3mV7hOdX2UKGgGR0Bw5ylP8AJcaAdL9WgIR0CWXuL5AQg+dX2UKGgGR0BuOyTt9hJAaAdL/GgIR0CWXzFPi1iOdX2UKGgGR0ByCNMsYl6aaAdNFgFoCEdAll9wxi5NGnV9lChoBkdAcHmEXcgyM2gHTQIBaAhHQJZfg+yJKrd1fZQoaAZHQHGB9QGfPHFoB00NAWgIR0CWX7OpsGgSdX2UKGgGR0BxcQ4OtnwoaAdL72gIR0CWYLkcS5AhdX2UKGgGR0BvTRCUornUaAdL/WgIR0CWYP3+dbxFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |