|
from transformers import PretrainedConfig, AutoConfig
|
|
|
|
class BERTMultiGATAttentionConfig(PretrainedConfig):
|
|
model_type = "deberta_semantic_similarity"
|
|
|
|
|
|
def __init__(
|
|
self,
|
|
transformer_model='microsoft/deberta-v3-base',
|
|
hidden_size=768,
|
|
num_heads=8,
|
|
dropout=0.07,
|
|
gnn_input_dim=768,
|
|
gnn_hidden_dim=768,
|
|
**kwargs
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.transformer_model = transformer_model
|
|
self.hidden_size = hidden_size
|
|
self.num_heads = num_heads
|
|
self.dropout = dropout
|
|
self.gnn_input_dim = gnn_input_dim
|
|
self.gnn_hidden_dim = gnn_hidden_dim
|
|
|
|
|
|
AutoConfig.register("deberta_semantic_similarity", BERTMultiGATAttentionConfig)
|
|
|