Kevius commited on
Commit
04c0848
1 Parent(s): 67cff75

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 244.05 +/- 18.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79ea4111d6c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79ea4111d750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79ea4111d7e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79ea4111d870>", "_build": "<function ActorCriticPolicy._build at 0x79ea4111d900>", "forward": "<function ActorCriticPolicy.forward at 0x79ea4111d990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79ea4111da20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79ea4111dab0>", "_predict": "<function ActorCriticPolicy._predict at 0x79ea4111db40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79ea4111dbd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79ea4111dc60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79ea4111dcf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79ea410cd080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718336132755385015, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1gT70UcIu6WrcNuaZ5GLRYx9q6thIkOAAAgD8AAIA/zfNUPQP8DrwyN6i8Is9aPXiKOD3F/8E6AACAPwAAgD8m+ZQ9FFyZulvH0blxHa+1PaujuVJ98jgAAIA/AACAPwDeZT2Iqac9taFUvj+O9L17nCe9hFgcOAAAAAAAAAAAjXEhvj3qb7vjmPW6vr0FuLgxrzxHmBA6AACAPwAAgD8AcpW8QwUsvPoBlL2h/N+9cLquPTItuz4AAIA/AACAPw0htr0psEi6zT99uvE+IzY0F0s6noGVOQAAgD8AAIA/gCEDvZKVqD62bgY9JH8pvsrIhbw1rXI9AAAAAAAAAACAKUe9XPNIuoo4nbo8mCi2exzkOvXHtTkAAIA/AACAP8B01D329FC60ZYtOouuSTXNwGs64slHuQAAgD8AAIA/ZsQIvI8udbo2mJE6CR4jNipUwzoXiqa5AACAPwAAgD/NLKK8W7C1P/Di975m22E9MlA6PBgLxToAAAAAAAAAALo8VT6PfJs/4rMHP9xfib79ooI+pXwJPgAAAAAAAAAAcxePPUJDEj9TQgS+EJJjvuW8UbwKZkA9AAAAAAAAAACayZA8KTBiupkiKjpiqRw1oVa6tx7uR7kAAIA/AACAP9MCbD7TN/c+Fdg/vvYUa752KLO7ZshOOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGDTEC/47BCMAWyUTegDjAF0lEdAkhbMI3R5T3V9lChoBkdAXm7OGCZnc2gHTegDaAhHQJIdXavicXp1fZQoaAZHQGI1dDx9XtBoB03oA2gIR0CSIRM/hVENdX2UKGgGR0Bkhj/XGwRoaAdN6ANoCEdAkiFdepn6EnV9lChoBkdAYijm/WUbDWgHTegDaAhHQJIi8ood+5R1fZQoaAZHQGJBE7fYSQJoB03oA2gIR0CSKpeJpFkQdX2UKGgGR0BkcFB0IToMaAdN6ANoCEdAkitdVNpM6HV9lChoBkdAWO/wUg0TDmgHTegDaAhHQJI2IljVhCt1fZQoaAZHQGI4i1qnFYNoB03oA2gIR0CSNq25QP7OdX2UKGgGR0Bd2h2r4nF6aAdN6ANoCEdAkjeEcXFcZHV9lChoBkdAZTMMir1dxGgHTegDaAhHQJI5Whxo7FN1fZQoaAZHQGACdeQdS2poB03oA2gIR0CSOmb1AZ88dX2UKGgGR0BhixJZntfHaAdN6ANoCEdAkjtj+zdDY3V9lChoBkdAZF3Ikqtoz2gHTegDaAhHQJI+QkxASnN1fZQoaAZHQF49Dv3JxNtoB03oA2gIR0CSPmjin5zpdX2UKGgGR0BkI8afjCHiaAdN6ANoCEdAkkIJ3Tuv2XV9lChoBkdAYx0XjU/fO2gHTegDaAhHQJJt2y/sVtZ1fZQoaAZHQGZKG+9Jz1doB03oA2gIR0CSdAqS5iEydX2UKGgGR0BiK/FYMfA9aAdN6ANoCEdAkni83IdU83V9lChoBkdAYi2PeYUnHGgHTegDaAhHQJJ5HaXa8Hx1fZQoaAZHQFv3Jp35eqtoB03oA2gIR0CSe0g4ffXPdX2UKGgGR0BgNSgRK6FuaAdN6ANoCEdAkoQ+scQyynV9lChoBkdAZSiDhcZ9/mgHTegDaAhHQJKFADSw4bV1fZQoaAZHQFyoU6xPfsNoB03oA2gIR0CSkALKmsNldX2UKGgGR0BfaiLIgeRxaAdN6ANoCEdAkpCSrDIiknV9lChoBkdAYfyCXhOxjmgHTegDaAhHQJKRcwCbMHN1fZQoaAZHQDleXrt3OfNoB0vPaAhHQJKS0yfthNN1fZQoaAZHQGAxMzuWrwRoB03oA2gIR0CSk0uIhyKfdX2UKGgGR0BkVCdUbT+eaAdN6ANoCEdAkpRRyGSIQHV9lChoBkdAZSM56t1ZDGgHTegDaAhHQJKVNK9PDYR1fZQoaAZHQFzRujynUDxoB03oA2gIR0CSmDm9QGfPdX2UKGgGR0Bl9P3Dej20aAdN6ANoCEdAkphg0sOG03V9lChoBkdAYjIm0E5hjWgHTegDaAhHQJKbBR1oxpN1fZQoaAZHQCgzGkvboKVoB00xAWgIR0CStNIT4+KTdX2UKGgGR0BuBRfrrxAjaAdN1QFoCEdAksDQMx46fnV9lChoBkdAYlNeKsMiKWgHTegDaAhHQJLHTVnVXmx1fZQoaAZHQF+jqmj0tiBoB03oA2gIR0CSzZjslb/wdX2UKGgGR0BkfbGgi/wiaAdN6ANoCEdAktEnMEA5rHV9lChoBkdAYXZrWRRuTGgHTegDaAhHQJLRcH+qBEt1fZQoaAZHQGYYa4lQdjpoB03oA2gIR0CS0vmTkhicdX2UKGgGR0BgrSXD3ueCaAdN6ANoCEdAktpVvl2eQXV9lChoBkfAB87yQPqcE2gHTSoBaAhHQJLqMJY1YQt1fZQoaAZHQGFnPHcUM5RoB03oA2gIR0CS6v93r2QGdX2UKGgGR0Bgs7u0CzTnaAdN6ANoCEdAkuym0E5hjXV9lChoBkdAYJpWQOnVG2gHTegDaAhHQJLtKevpyIZ1fZQoaAZHQF67Gm1pj+doB03oA2gIR0CS7j9tdiUgdX2UKGgGR0BkoiobXHzZaAdN6ANoCEdAku8u6ErXlXV9lChoBkdAYLQ/zJ6ppGgHTegDaAhHQJLyRArxy4p1fZQoaAZHQGGH+sxO+IxoB03oA2gIR0CS8mhXbM5fdX2UKGgGR0Bi+pQk5ZKWaAdN6ANoCEdAkvTVivxH5XV9lChoBkdAYfDC2MKkVWgHTegDaAhHQJMLTkPtlZp1fZQoaAZHQG8dBXbM5fdoB014AWgIR0CTEupiI+GHdX2UKGgGR0Bk0YTCcf/4aAdN6ANoCEdAkxfQnUlRg3V9lChoBkdAYcic6vJRwmgHTegDaAhHQJMeJhOP/711fZQoaAZHQGOoN3wCr95oB03oA2gIR0CTIy86mwaBdX2UKGgGR0BcLqyKNyYHaAdN6ANoCEdAkyYjGPxQSHV9lChoBkdAW6hT/ACW/2gHTegDaAhHQJMmYG/vfCR1fZQoaAZHQGH3SWZ7XxxoB03oA2gIR0CTLo+gUUO/dX2UKGgGR0BgjmmvW6K+aAdN6ANoCEdAkzrgnMMZxnV9lChoBkdAXJ+XqqwQlWgHTegDaAhHQJM7o6hg3Lp1fZQoaAZHQGOBWcSXdCVoB03oA2gIR0CTPaPUaybAdX2UKGgGR0BgRq6MBIWhaAdN6ANoCEdAkz7VANXo1XV9lChoBkdAX8LczqKP4mgHTegDaAhHQJM/3QXyiEh1fZQoaAZHQGAK2s7uDz1oB03oA2gIR0CTQ4kqMFUydX2UKGgGR0BjvJjc2zfKaAdN6ANoCEdAk0PE/8l5W3V9lChoBkdAYEOlUp/gBWgHTegDaAhHQJNHl0fYBeZ1fZQoaAZHQGSaaOo5xR5oB03oA2gIR0CTYdTXJ5midX2UKGgGR0Bhc4tOEdvLaAdN6ANoCEdAk2q1fJFLFnV9lChoBkdAX7mHnEETx2gHTegDaAhHQJNuZfdAPd51fZQoaAZHQGGSxREWqLloB03oA2gIR0CTc/+aBqbjdX2UKGgGR0BkuAxQBPsSaAdN6ANoCEdAk3r0GFBY3nV9lChoBkdAX+YlhPTG52gHTegDaAhHQJN/e+bmU4d1fZQoaAZHQGK7kFnqVyFoB03oA2gIR0CTf9Ux20RfdX2UKGgGR0BfHt2Pkq+baAdN6ANoCEdAk4kRq9GqgnV9lChoBkdAYyCANoakymgHTegDaAhHQJOWQzHjp9t1fZQoaAZHQGAE6PbO/tZoB03oA2gIR0CTlxGyon8bdX2UKGgGR0Bkwaw6hg3MaAdN6ANoCEdAk5kQGjbi63V9lChoBkdAW6ucd5prUWgHTegDaAhHQJOaPY+Sr5t1fZQoaAZHQGOMXIEKVptoB03oA2gIR0CTm0pXZGrkdX2UKGgGR0Bgd6FXaJyiaAdN6ANoCEdAk565v5xionV9lChoBkdAYeHvd/J/5WgHTegDaAhHQJOe5U1hsqJ1fZQoaAZHQGXVfd69kBloB03oA2gIR0CTobVAzHjqdX2UKGgGR0BjLU1XNke7aAdN6ANoCEdAk6es+3YthHV9lChoBkfAHc6Kcd5prWgHTQcBaAhHQJPBF0EHMU11fZQoaAZHQF4FaMaS9uhoB03oA2gIR0CTxZqRU3n7dX2UKGgGR0BgSzIRywOfaAdN6ANoCEdAk8jH+2mYSnV9lChoBkdAXHSZof0VamgHTegDaAhHQJPNoxIre691fZQoaAZHQGR/uSntOVRoB03oA2gIR0CT0j3t8eCDdX2UKGgGR0BjBUPxx1gZaAdN6ANoCEdAk9UO2Zy+6HV9lChoBkdAZGSZtvXK82gHTegDaAhHQJPVS51/2Cd1fZQoaAZHQGG8FrM1TBJoB03oA2gIR0CT3TFvybx3dX2UKGgGR0BeKACnxaxHaAdN6ANoCEdAk+qIEB8x9HV9lChoBkdAZcLNCZ4Oc2gHTegDaAhHQJPri+qR2bJ1fZQoaAZHQGHyXv6TGHZoB03oA2gIR0CT7jbA1vVFdX2UKGgGR0Bjwgeii7CjaAdN6ANoCEdAk/C8H4XXRXV9lChoBkdAXzxAprk8zWgHTegDaAhHQJP0R3IMjNZ1fZQoaAZHQGIzW4mTkhloB03oA2gIR0CT9HSA6MisdX2UKGgGR0BjH7vy9VWCaAdN6ANoCEdAk/deTFERa3V9lChoBkdAZqiknkT6BWgHTegDaAhHQJP9KQT238Z1fZQoaAZHQGOX/V7Qb+9oB03oA2gIR0CT/rsHjZL7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3df3c48ad72769c8d46de54cd5e6dccb6adc46dcc440a0864a222b3e930c018c
3
+ size 148084
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79ea4111d6c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79ea4111d750>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79ea4111d7e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79ea4111d870>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79ea4111d900>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79ea4111d990>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79ea4111da20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79ea4111dab0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79ea4111db40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79ea4111dbd0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79ea4111dc60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79ea4111dcf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79ea410cd080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1718336132755385015,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1gT70UcIu6WrcNuaZ5GLRYx9q6thIkOAAAgD8AAIA/zfNUPQP8DrwyN6i8Is9aPXiKOD3F/8E6AACAPwAAgD8m+ZQ9FFyZulvH0blxHa+1PaujuVJ98jgAAIA/AACAPwDeZT2Iqac9taFUvj+O9L17nCe9hFgcOAAAAAAAAAAAjXEhvj3qb7vjmPW6vr0FuLgxrzxHmBA6AACAPwAAgD8AcpW8QwUsvPoBlL2h/N+9cLquPTItuz4AAIA/AACAPw0htr0psEi6zT99uvE+IzY0F0s6noGVOQAAgD8AAIA/gCEDvZKVqD62bgY9JH8pvsrIhbw1rXI9AAAAAAAAAACAKUe9XPNIuoo4nbo8mCi2exzkOvXHtTkAAIA/AACAP8B01D329FC60ZYtOouuSTXNwGs64slHuQAAgD8AAIA/ZsQIvI8udbo2mJE6CR4jNipUwzoXiqa5AACAPwAAgD/NLKK8W7C1P/Di975m22E9MlA6PBgLxToAAAAAAAAAALo8VT6PfJs/4rMHP9xfib79ooI+pXwJPgAAAAAAAAAAcxePPUJDEj9TQgS+EJJjvuW8UbwKZkA9AAAAAAAAAACayZA8KTBiupkiKjpiqRw1oVa6tx7uR7kAAIA/AACAP9MCbD7TN/c+Fdg/vvYUa752KLO7ZshOOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGDTEC/47BCMAWyUTegDjAF0lEdAkhbMI3R5T3V9lChoBkdAXm7OGCZnc2gHTegDaAhHQJIdXavicXp1fZQoaAZHQGI1dDx9XtBoB03oA2gIR0CSIRM/hVENdX2UKGgGR0Bkhj/XGwRoaAdN6ANoCEdAkiFdepn6EnV9lChoBkdAYijm/WUbDWgHTegDaAhHQJIi8ood+5R1fZQoaAZHQGJBE7fYSQJoB03oA2gIR0CSKpeJpFkQdX2UKGgGR0BkcFB0IToMaAdN6ANoCEdAkitdVNpM6HV9lChoBkdAWO/wUg0TDmgHTegDaAhHQJI2IljVhCt1fZQoaAZHQGI4i1qnFYNoB03oA2gIR0CSNq25QP7OdX2UKGgGR0Bd2h2r4nF6aAdN6ANoCEdAkjeEcXFcZHV9lChoBkdAZTMMir1dxGgHTegDaAhHQJI5Whxo7FN1fZQoaAZHQGACdeQdS2poB03oA2gIR0CSOmb1AZ88dX2UKGgGR0BhixJZntfHaAdN6ANoCEdAkjtj+zdDY3V9lChoBkdAZF3Ikqtoz2gHTegDaAhHQJI+QkxASnN1fZQoaAZHQF49Dv3JxNtoB03oA2gIR0CSPmjin5zpdX2UKGgGR0BkI8afjCHiaAdN6ANoCEdAkkIJ3Tuv2XV9lChoBkdAYx0XjU/fO2gHTegDaAhHQJJt2y/sVtZ1fZQoaAZHQGZKG+9Jz1doB03oA2gIR0CSdAqS5iEydX2UKGgGR0BiK/FYMfA9aAdN6ANoCEdAkni83IdU83V9lChoBkdAYi2PeYUnHGgHTegDaAhHQJJ5HaXa8Hx1fZQoaAZHQFv3Jp35eqtoB03oA2gIR0CSe0g4ffXPdX2UKGgGR0BgNSgRK6FuaAdN6ANoCEdAkoQ+scQyynV9lChoBkdAZSiDhcZ9/mgHTegDaAhHQJKFADSw4bV1fZQoaAZHQFyoU6xPfsNoB03oA2gIR0CSkALKmsNldX2UKGgGR0BfaiLIgeRxaAdN6ANoCEdAkpCSrDIiknV9lChoBkdAYfyCXhOxjmgHTegDaAhHQJKRcwCbMHN1fZQoaAZHQDleXrt3OfNoB0vPaAhHQJKS0yfthNN1fZQoaAZHQGAxMzuWrwRoB03oA2gIR0CSk0uIhyKfdX2UKGgGR0BkVCdUbT+eaAdN6ANoCEdAkpRRyGSIQHV9lChoBkdAZSM56t1ZDGgHTegDaAhHQJKVNK9PDYR1fZQoaAZHQFzRujynUDxoB03oA2gIR0CSmDm9QGfPdX2UKGgGR0Bl9P3Dej20aAdN6ANoCEdAkphg0sOG03V9lChoBkdAYjIm0E5hjWgHTegDaAhHQJKbBR1oxpN1fZQoaAZHQCgzGkvboKVoB00xAWgIR0CStNIT4+KTdX2UKGgGR0BuBRfrrxAjaAdN1QFoCEdAksDQMx46fnV9lChoBkdAYlNeKsMiKWgHTegDaAhHQJLHTVnVXmx1fZQoaAZHQF+jqmj0tiBoB03oA2gIR0CSzZjslb/wdX2UKGgGR0BkfbGgi/wiaAdN6ANoCEdAktEnMEA5rHV9lChoBkdAYXZrWRRuTGgHTegDaAhHQJLRcH+qBEt1fZQoaAZHQGYYa4lQdjpoB03oA2gIR0CS0vmTkhicdX2UKGgGR0BgrSXD3ueCaAdN6ANoCEdAktpVvl2eQXV9lChoBkfAB87yQPqcE2gHTSoBaAhHQJLqMJY1YQt1fZQoaAZHQGFnPHcUM5RoB03oA2gIR0CS6v93r2QGdX2UKGgGR0Bgs7u0CzTnaAdN6ANoCEdAkuym0E5hjXV9lChoBkdAYJpWQOnVG2gHTegDaAhHQJLtKevpyIZ1fZQoaAZHQF67Gm1pj+doB03oA2gIR0CS7j9tdiUgdX2UKGgGR0BkoiobXHzZaAdN6ANoCEdAku8u6ErXlXV9lChoBkdAYLQ/zJ6ppGgHTegDaAhHQJLyRArxy4p1fZQoaAZHQGGH+sxO+IxoB03oA2gIR0CS8mhXbM5fdX2UKGgGR0Bi+pQk5ZKWaAdN6ANoCEdAkvTVivxH5XV9lChoBkdAYfDC2MKkVWgHTegDaAhHQJMLTkPtlZp1fZQoaAZHQG8dBXbM5fdoB014AWgIR0CTEupiI+GHdX2UKGgGR0Bk0YTCcf/4aAdN6ANoCEdAkxfQnUlRg3V9lChoBkdAYcic6vJRwmgHTegDaAhHQJMeJhOP/711fZQoaAZHQGOoN3wCr95oB03oA2gIR0CTIy86mwaBdX2UKGgGR0BcLqyKNyYHaAdN6ANoCEdAkyYjGPxQSHV9lChoBkdAW6hT/ACW/2gHTegDaAhHQJMmYG/vfCR1fZQoaAZHQGH3SWZ7XxxoB03oA2gIR0CTLo+gUUO/dX2UKGgGR0BgjmmvW6K+aAdN6ANoCEdAkzrgnMMZxnV9lChoBkdAXJ+XqqwQlWgHTegDaAhHQJM7o6hg3Lp1fZQoaAZHQGOBWcSXdCVoB03oA2gIR0CTPaPUaybAdX2UKGgGR0BgRq6MBIWhaAdN6ANoCEdAkz7VANXo1XV9lChoBkdAX8LczqKP4mgHTegDaAhHQJM/3QXyiEh1fZQoaAZHQGAK2s7uDz1oB03oA2gIR0CTQ4kqMFUydX2UKGgGR0BjvJjc2zfKaAdN6ANoCEdAk0PE/8l5W3V9lChoBkdAYEOlUp/gBWgHTegDaAhHQJNHl0fYBeZ1fZQoaAZHQGSaaOo5xR5oB03oA2gIR0CTYdTXJ5midX2UKGgGR0Bhc4tOEdvLaAdN6ANoCEdAk2q1fJFLFnV9lChoBkdAX7mHnEETx2gHTegDaAhHQJNuZfdAPd51fZQoaAZHQGGSxREWqLloB03oA2gIR0CTc/+aBqbjdX2UKGgGR0BkuAxQBPsSaAdN6ANoCEdAk3r0GFBY3nV9lChoBkdAX+YlhPTG52gHTegDaAhHQJN/e+bmU4d1fZQoaAZHQGK7kFnqVyFoB03oA2gIR0CTf9Ux20RfdX2UKGgGR0BfHt2Pkq+baAdN6ANoCEdAk4kRq9GqgnV9lChoBkdAYyCANoakymgHTegDaAhHQJOWQzHjp9t1fZQoaAZHQGAE6PbO/tZoB03oA2gIR0CTlxGyon8bdX2UKGgGR0Bkwaw6hg3MaAdN6ANoCEdAk5kQGjbi63V9lChoBkdAW6ucd5prUWgHTegDaAhHQJOaPY+Sr5t1fZQoaAZHQGOMXIEKVptoB03oA2gIR0CTm0pXZGrkdX2UKGgGR0Bgd6FXaJyiaAdN6ANoCEdAk565v5xionV9lChoBkdAYeHvd/J/5WgHTegDaAhHQJOe5U1hsqJ1fZQoaAZHQGXVfd69kBloB03oA2gIR0CTobVAzHjqdX2UKGgGR0BjLU1XNke7aAdN6ANoCEdAk6es+3YthHV9lChoBkfAHc6Kcd5prWgHTQcBaAhHQJPBF0EHMU11fZQoaAZHQF4FaMaS9uhoB03oA2gIR0CTxZqRU3n7dX2UKGgGR0BgSzIRywOfaAdN6ANoCEdAk8jH+2mYSnV9lChoBkdAXHSZof0VamgHTegDaAhHQJPNoxIre691fZQoaAZHQGR/uSntOVRoB03oA2gIR0CT0j3t8eCDdX2UKGgGR0BjBUPxx1gZaAdN6ANoCEdAk9UO2Zy+6HV9lChoBkdAZGSZtvXK82gHTegDaAhHQJPVS51/2Cd1fZQoaAZHQGG8FrM1TBJoB03oA2gIR0CT3TFvybx3dX2UKGgGR0BeKACnxaxHaAdN6ANoCEdAk+qIEB8x9HV9lChoBkdAZcLNCZ4Oc2gHTegDaAhHQJPri+qR2bJ1fZQoaAZHQGHyXv6TGHZoB03oA2gIR0CT7jbA1vVFdX2UKGgGR0Bjwgeii7CjaAdN6ANoCEdAk/C8H4XXRXV9lChoBkdAXzxAprk8zWgHTegDaAhHQJP0R3IMjNZ1fZQoaAZHQGIzW4mTkhloB03oA2gIR0CT9HSA6MisdX2UKGgGR0BjH7vy9VWCaAdN6ANoCEdAk/deTFERa3V9lChoBkdAZqiknkT6BWgHTegDaAhHQJP9KQT238Z1fZQoaAZHQGOX/V7Qb+9oB03oA2gIR0CT/rsHjZL7dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7ff3caf8b5231315d017ddfb6dfcb5a98f0a4bac716a96b8b99b8b65adf3c68
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:451e1524179a251629750b28a8d5f98bfdeb9a1a76179e7b4f29a142ece98cfa
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (198 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 244.05439135538464, "std_reward": 18.087513435104057, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-14T03:58:25.985800"}