kevintu commited on
Commit
ce0f3a5
·
verified ·
1 Parent(s): 41f352a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ The following provides the code to implement the task of detecting personality from an input text.
6
+
7
+
8
+ #import packages
9
+
10
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
11
+ import torch
12
+ model = AutoModelForSequenceClassification.from_pretrained("Kevintu/Personality_LM")
13
+ tokenizer = AutoTokenizer.from_pretrained("Kevintu/Personality_LM")
14
+
15
+
16
+ # Example new text input
17
+ #new_text = "I really enjoy working on complex problems and collaborating with others."
18
+
19
+
20
+ # Define the path to your text file
21
+ file_path = 'path/to/your/textfile.txt'
22
+
23
+ # Read the content of the file
24
+ with open(file_path, 'r', encoding='utf-8') as file:
25
+ new_text = file.read()
26
+
27
+
28
+ # Encode the text using the same tokenizer used during training
29
+ encoded_input = tokenizer(new_text, return_tensors='pt', padding=True, truncation=True, max_length=64)
30
+
31
+
32
+ # Move the model to the correct device (CPU in this case, or GPU if available)
33
+ model.eval() # Set the model to evaluation mode
34
+
35
+ # Perform the prediction
36
+ with torch.no_grad():
37
+ outputs = model(**encoded_input)
38
+
39
+ # Get the predictions (the output here depends on whether you are doing regression or classification)
40
+ predictions = outputs.logits.squeeze()
41
+
42
+
43
+ # Assuming the model is a regression model and outputs raw scores
44
+ predicted_scores = predictions.numpy() # Convert to numpy array if necessary
45
+ trait_names = ["Agreeableness", "Openness", "Conscientiousness", "Extraversion", "Neuroticism"]
46
+
47
+ # Print the predicted personality traits scores
48
+ for trait, score in zip(trait_names, predicted_scores):
49
+ print(f"{trait}: {score:.4f}")
50
+
51
+ ##"output": "agreeableness: 0.4600000000; openness: 0.2700000000; conscientiousness: 0.3100000000; extraversion: 0.1000000000; neuroticism: 0.8400000000"