KevSun commited on
Commit
87256ac
·
verified ·
1 Parent(s): 7b8f585

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -9
README.md CHANGED
@@ -15,28 +15,22 @@ The following provides the code to implement the task of detecting personality f
15
 
16
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
17
  import torch
18
- model = AutoModelForSequenceClassification.from_pretrained("Kevintu/Personality_LM")
19
  tokenizer = AutoTokenizer.from_pretrained("KevSun/Personality_LM")
20
 
21
-
22
  # Example new text input
23
  #new_text = "I really enjoy working on complex problems and collaborating with others."
24
 
25
-
26
- # Define the path to your text file
27
  file_path = 'path/to/your/textfile.txt'
28
 
29
- # Read the content of the file
30
  with open(file_path, 'r', encoding='utf-8') as file:
31
  new_text = file.read()
32
 
33
-
34
  # Encode the text using the same tokenizer used during training
35
  encoded_input = tokenizer(new_text, return_tensors='pt', padding=True, truncation=True, max_length=64)
36
 
37
-
38
  # Move the model to the correct device (CPU in this case, or GPU if available)
39
- model.eval() # Set the model to evaluation mode
40
 
41
  # Perform the prediction
42
  with torch.no_grad():
@@ -45,7 +39,6 @@ with torch.no_grad():
45
  # Get the predictions (the output here depends on whether you are doing regression or classification)
46
  predictions = outputs.logits.squeeze()
47
 
48
-
49
  # Assuming the model is a regression model and outputs raw scores
50
  predicted_scores = predictions.numpy() # Convert to numpy array if necessary
51
  trait_names = ["Agreeableness", "Openness", "Conscientiousness", "Extraversion", "Neuroticism"]
 
15
 
16
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
17
  import torch
18
+ model = AutoModelForSequenceClassification.from_pretrained("KevSun/Personality_LM")
19
  tokenizer = AutoTokenizer.from_pretrained("KevSun/Personality_LM")
20
 
 
21
  # Example new text input
22
  #new_text = "I really enjoy working on complex problems and collaborating with others."
23
 
 
 
24
  file_path = 'path/to/your/textfile.txt'
25
 
 
26
  with open(file_path, 'r', encoding='utf-8') as file:
27
  new_text = file.read()
28
 
 
29
  # Encode the text using the same tokenizer used during training
30
  encoded_input = tokenizer(new_text, return_tensors='pt', padding=True, truncation=True, max_length=64)
31
 
 
32
  # Move the model to the correct device (CPU in this case, or GPU if available)
33
+ #model.eval() # Set the model to evaluation mode
34
 
35
  # Perform the prediction
36
  with torch.no_grad():
 
39
  # Get the predictions (the output here depends on whether you are doing regression or classification)
40
  predictions = outputs.logits.squeeze()
41
 
 
42
  # Assuming the model is a regression model and outputs raw scores
43
  predicted_scores = predictions.numpy() # Convert to numpy array if necessary
44
  trait_names = ["Agreeableness", "Openness", "Conscientiousness", "Extraversion", "Neuroticism"]