ResShift / 2024-06-24-21-18 /training.log
KenWu's picture
Upload folder using huggingface_hub
3d7026d verified
raw
history blame
4.87 kB
trainer:
target: trainer.TrainerDifIR
model:
target: models.unet.UNetModelSwin
ckpt_path: null
params:
image_size: 64
in_channels: 3
model_channels: 160
out_channels: 3
attention_resolutions:
- 64
- 32
- 16
- 8
dropout: 0
channel_mult:
- 1
- 2
- 2
- 4
num_res_blocks:
- 2
- 2
- 2
- 2
conv_resample: true
dims: 2
use_fp16: false
num_head_channels: 32
use_scale_shift_norm: true
resblock_updown: false
swin_depth: 2
swin_embed_dim: 192
window_size: 8
mlp_ratio: 4
cond_lq: true
lq_size: 64
diffusion:
target: models.script_util.create_gaussian_diffusion
params:
sf: 4
schedule_name: exponential
schedule_kwargs:
power: 0.3
etas_end: 0.99
steps: 15
min_noise_level: 0.04
kappa: 2.0
weighted_mse: false
predict_type: xstart
timestep_respacing: null
scale_factor: 1.0
normalize_input: true
latent_flag: true
autoencoder:
target: ldm.models.autoencoder.VQModelTorch
ckpt_path: weights/autoencoder_vq_f4.pth
use_fp16: true
params:
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
padding_mode: zeros
degradation:
sf: 4
resize_prob:
- 0.2
- 0.7
- 0.1
resize_range:
- 0.15
- 1.5
gaussian_noise_prob: 0.5
noise_range:
- 1
- 30
poisson_scale_range:
- 0.05
- 3.0
gray_noise_prob: 0.4
jpeg_range:
- 30
- 95
second_order_prob: 0.5
second_blur_prob: 0.8
resize_prob2:
- 0.3
- 0.4
- 0.3
resize_range2:
- 0.3
- 1.2
gaussian_noise_prob2: 0.5
noise_range2:
- 1
- 25
poisson_scale_range2:
- 0.05
- 2.5
gray_noise_prob2: 0.4
jpeg_range2:
- 30
- 95
gt_size: 256
resize_back: false
use_sharp: false
data:
train:
type: realesrgan
params:
dir_paths: []
txt_file_path:
- /content/ResShift/high_res/train.txt
im_exts:
- JPEG
io_backend:
type: disk
blur_kernel_size: 21
kernel_list:
- iso
- aniso
- generalized_iso
- generalized_aniso
- plateau_iso
- plateau_aniso
kernel_prob:
- 0.45
- 0.25
- 0.12
- 0.03
- 0.12
- 0.03
sinc_prob: 0.1
blur_sigma:
- 0.2
- 3.0
betag_range:
- 0.5
- 4.0
betap_range:
- 1
- 2.0
blur_kernel_size2: 15
kernel_list2:
- iso
- aniso
- generalized_iso
- generalized_aniso
- plateau_iso
- plateau_aniso
kernel_prob2:
- 0.45
- 0.25
- 0.12
- 0.03
- 0.12
- 0.03
sinc_prob2: 0.1
blur_sigma2:
- 0.2
- 1.5
betag_range2:
- 0.5
- 4.0
betap_range2:
- 1
- 2.0
final_sinc_prob: 0.8
gt_size: 256
crop_pad_size: 300
use_hflip: true
use_rot: false
rescale_gt: true
val:
type: base
params:
dir_path: testdata/Val_SR/lq
im_exts: png
transform_type: default
transform_kwargs:
mean: 0.5
std: 0.5
extra_dir_path: testdata/Val_SR/gt
extra_transform_type: default
extra_transform_kwargs:
mean: 0.5
std: 0.5
recursive: false
train:
lr: 5.0e-05
lr_min: 2.0e-05
lr_schedule: null
warmup_iterations: 100
batch:
- 8
- 1
microbatch: 1
num_workers: 4
prefetch_factor: 2
weight_decay: 0
ema_rate: 0.999
iterations: 1000
save_freq: 10000
log_freq:
- 200
- 2000
- 1
local_logging: true
tf_logging: false
use_ema_val: true
val_freq: ${train.save_freq}
val_y_channel: true
val_resolution: ${model.params.lq_size}
val_padding_mode: reflect
use_amp: true
seed: 123456
global_seeding: false
compile:
flag: false
mode: reduce-overhead
save_dir: logging/
resume: ''
cfg_path: configs/realsr_swinunet_realesrgan256.yaml
Number of parameters: 118.59M
Restoring autoencoder from weights/autoencoder_vq_f4.pth
Number of images in train data set: 1254
Number of images in val data set: 32
Train: 000200/001000, Loss/MSE: t(1):1.6e-01/1.6e-01, t(8):4.5e-01/4.5e-01, t(15):5.9e-01/5.9e-01, lr:5.00e-05
Train: 000400/001000, Loss/MSE: t(1):2.8e-02/2.8e-02, t(8):3.9e-01/3.9e-01, t(15):5.0e-01/5.0e-01, lr:5.00e-05
Train: 000600/001000, Loss/MSE: t(1):2.1e-02/2.1e-02, t(8):3.4e-01/3.4e-01, t(15):4.6e-01/4.6e-01, lr:5.00e-05
Train: 000800/001000, Loss/MSE: t(1):1.4e-02/1.4e-02, t(8):3.5e-01/3.5e-01, t(15):5.1e-01/5.1e-01, lr:5.00e-05
Train: 001000/001000, Loss/MSE: t(1):1.4e-02/1.4e-02, t(8):2.9e-01/2.9e-01, t(15):4.6e-01/4.6e-01, lr:5.00e-05