|
trainer: |
|
target: trainer.TrainerDifIR |
|
model: |
|
target: models.unet.UNetModelSwin |
|
ckpt_path: null |
|
params: |
|
image_size: 64 |
|
in_channels: 3 |
|
model_channels: 160 |
|
out_channels: 3 |
|
attention_resolutions: |
|
- 64 |
|
- 32 |
|
- 16 |
|
- 8 |
|
dropout: 0 |
|
channel_mult: |
|
- 1 |
|
- 2 |
|
- 2 |
|
- 4 |
|
num_res_blocks: |
|
- 2 |
|
- 2 |
|
- 2 |
|
- 2 |
|
conv_resample: true |
|
dims: 2 |
|
use_fp16: false |
|
num_head_channels: 32 |
|
use_scale_shift_norm: true |
|
resblock_updown: false |
|
swin_depth: 2 |
|
swin_embed_dim: 192 |
|
window_size: 8 |
|
mlp_ratio: 4 |
|
cond_lq: true |
|
lq_size: 64 |
|
diffusion: |
|
target: models.script_util.create_gaussian_diffusion |
|
params: |
|
sf: 4 |
|
schedule_name: exponential |
|
schedule_kwargs: |
|
power: 0.3 |
|
etas_end: 0.99 |
|
steps: 15 |
|
min_noise_level: 0.04 |
|
kappa: 2.0 |
|
weighted_mse: false |
|
predict_type: xstart |
|
timestep_respacing: null |
|
scale_factor: 1.0 |
|
normalize_input: true |
|
latent_flag: true |
|
autoencoder: |
|
target: ldm.models.autoencoder.VQModelTorch |
|
ckpt_path: weights/autoencoder_vq_f4.pth |
|
use_fp16: true |
|
params: |
|
embed_dim: 3 |
|
n_embed: 8192 |
|
ddconfig: |
|
double_z: false |
|
z_channels: 3 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: |
|
- 1 |
|
- 2 |
|
- 4 |
|
num_res_blocks: 2 |
|
attn_resolutions: [] |
|
dropout: 0.0 |
|
padding_mode: zeros |
|
degradation: |
|
sf: 4 |
|
resize_prob: |
|
- 0.2 |
|
- 0.7 |
|
- 0.1 |
|
resize_range: |
|
- 0.15 |
|
- 1.5 |
|
gaussian_noise_prob: 0.5 |
|
noise_range: |
|
- 1 |
|
- 30 |
|
poisson_scale_range: |
|
- 0.05 |
|
- 3.0 |
|
gray_noise_prob: 0.4 |
|
jpeg_range: |
|
- 30 |
|
- 95 |
|
second_order_prob: 0.5 |
|
second_blur_prob: 0.8 |
|
resize_prob2: |
|
- 0.3 |
|
- 0.4 |
|
- 0.3 |
|
resize_range2: |
|
- 0.3 |
|
- 1.2 |
|
gaussian_noise_prob2: 0.5 |
|
noise_range2: |
|
- 1 |
|
- 25 |
|
poisson_scale_range2: |
|
- 0.05 |
|
- 2.5 |
|
gray_noise_prob2: 0.4 |
|
jpeg_range2: |
|
- 30 |
|
- 95 |
|
gt_size: 256 |
|
resize_back: false |
|
use_sharp: false |
|
data: |
|
train: |
|
type: realesrgan |
|
params: |
|
dir_paths: [] |
|
txt_file_path: |
|
- /content/ResShift/high_res/train.txt |
|
im_exts: |
|
- JPEG |
|
io_backend: |
|
type: disk |
|
blur_kernel_size: 21 |
|
kernel_list: |
|
- iso |
|
- aniso |
|
- generalized_iso |
|
- generalized_aniso |
|
- plateau_iso |
|
- plateau_aniso |
|
kernel_prob: |
|
- 0.45 |
|
- 0.25 |
|
- 0.12 |
|
- 0.03 |
|
- 0.12 |
|
- 0.03 |
|
sinc_prob: 0.1 |
|
blur_sigma: |
|
- 0.2 |
|
- 3.0 |
|
betag_range: |
|
- 0.5 |
|
- 4.0 |
|
betap_range: |
|
- 1 |
|
- 2.0 |
|
blur_kernel_size2: 15 |
|
kernel_list2: |
|
- iso |
|
- aniso |
|
- generalized_iso |
|
- generalized_aniso |
|
- plateau_iso |
|
- plateau_aniso |
|
kernel_prob2: |
|
- 0.45 |
|
- 0.25 |
|
- 0.12 |
|
- 0.03 |
|
- 0.12 |
|
- 0.03 |
|
sinc_prob2: 0.1 |
|
blur_sigma2: |
|
- 0.2 |
|
- 1.5 |
|
betag_range2: |
|
- 0.5 |
|
- 4.0 |
|
betap_range2: |
|
- 1 |
|
- 2.0 |
|
final_sinc_prob: 0.8 |
|
gt_size: 256 |
|
crop_pad_size: 300 |
|
use_hflip: true |
|
use_rot: false |
|
rescale_gt: true |
|
val: |
|
type: base |
|
params: |
|
dir_path: testdata/Val_SR/lq |
|
im_exts: png |
|
transform_type: default |
|
transform_kwargs: |
|
mean: 0.5 |
|
std: 0.5 |
|
extra_dir_path: testdata/Val_SR/gt |
|
extra_transform_type: default |
|
extra_transform_kwargs: |
|
mean: 0.5 |
|
std: 0.5 |
|
recursive: false |
|
train: |
|
lr: 5.0e-05 |
|
lr_min: 2.0e-05 |
|
lr_schedule: null |
|
warmup_iterations: 100 |
|
batch: |
|
- 8 |
|
- 1 |
|
microbatch: 1 |
|
num_workers: 4 |
|
prefetch_factor: 2 |
|
weight_decay: 0 |
|
ema_rate: 0.999 |
|
iterations: 1000 |
|
save_freq: 10000 |
|
log_freq: |
|
- 200 |
|
- 2000 |
|
- 1 |
|
local_logging: true |
|
tf_logging: false |
|
use_ema_val: true |
|
val_freq: ${train.save_freq} |
|
val_y_channel: true |
|
val_resolution: ${model.params.lq_size} |
|
val_padding_mode: reflect |
|
use_amp: true |
|
seed: 123456 |
|
global_seeding: false |
|
compile: |
|
flag: false |
|
mode: reduce-overhead |
|
save_dir: logging/ |
|
resume: '' |
|
cfg_path: configs/realsr_swinunet_realesrgan256.yaml |
|
|
|
Number of parameters: 118.59M |
|
Restoring autoencoder from weights/autoencoder_vq_f4.pth |
|
Number of images in train data set: 1254 |
|
Number of images in val data set: 32 |
|
Train: 000200/001000, Loss/MSE: t(1):1.6e-01/1.6e-01, t(8):4.5e-01/4.5e-01, t(15):5.9e-01/5.9e-01, lr:5.00e-05 |
|
Train: 000400/001000, Loss/MSE: t(1):2.8e-02/2.8e-02, t(8):3.9e-01/3.9e-01, t(15):5.0e-01/5.0e-01, lr:5.00e-05 |
|
Train: 000600/001000, Loss/MSE: t(1):2.1e-02/2.1e-02, t(8):3.4e-01/3.4e-01, t(15):4.6e-01/4.6e-01, lr:5.00e-05 |
|
Train: 000800/001000, Loss/MSE: t(1):1.4e-02/1.4e-02, t(8):3.5e-01/3.5e-01, t(15):5.1e-01/5.1e-01, lr:5.00e-05 |
|
Train: 001000/001000, Loss/MSE: t(1):1.4e-02/1.4e-02, t(8):2.9e-01/2.9e-01, t(15):4.6e-01/4.6e-01, lr:5.00e-05 |
|
|