|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from utils.dataset_utils import get_sketch |
|
from utils.utils import resize_pad, generate_mask, extract_cbr, create_cbz, sorted_alphanumeric, subfolder_image_search, remove_folder |
|
from torchvision.transforms import ToTensor |
|
import os |
|
import matplotlib.pyplot as plt |
|
import argparse |
|
from model.models import Colorizer, Generator |
|
from model.extractor import get_seresnext_extractor |
|
from utils.xdog import XDoGSketcher |
|
from utils.utils import open_json |
|
import sys |
|
from denoising.denoiser import FFDNetDenoiser |
|
|
|
def colorize_without_hint(inp, color_args): |
|
i_hint = torch.zeros(1, 4, inp.shape[2], inp.shape[3]).float().to(color_args['device']) |
|
|
|
with torch.no_grad(): |
|
fake_color, _ = color_args['colorizer'](torch.cat([inp, i_hint], 1)) |
|
|
|
if color_args['auto_hint']: |
|
mask = generate_mask(fake_color.shape[2], fake_color.shape[3], full = False, prob = 1, sigma = color_args['auto_hint_sigma']).unsqueeze(0) |
|
mask = mask.to(color_args['device']) |
|
|
|
|
|
if color_args['ignore_gray']: |
|
diff1 = torch.abs(fake_color[:, 0] - fake_color[:, 1]) |
|
diff2 = torch.abs(fake_color[:, 0] - fake_color[:, 2]) |
|
diff3 = torch.abs(fake_color[:, 1] - fake_color[:, 2]) |
|
mask = ((mask + ((diff1 + diff2 + diff3) > 60 / 255).float().unsqueeze(1)) == 2).float() |
|
|
|
|
|
i_hint = torch.cat([fake_color * mask, mask], 1) |
|
|
|
with torch.no_grad(): |
|
fake_color, _ = color_args['colorizer'](torch.cat([inp, i_hint], 1)) |
|
|
|
return fake_color |
|
|
|
|
|
def process_image(image, color_args, to_tensor = ToTensor()): |
|
image, pad = resize_pad(image) |
|
|
|
if color_args['denoiser'] is not None: |
|
image = color_args['denoiser'].get_denoised_image(image, color_args['denoiser_sigma']) |
|
|
|
bw, dfm = get_sketch(image, color_args['sketcher'], color_args['dfm']) |
|
|
|
bw = to_tensor(bw).unsqueeze(0).to(color_args['device']) |
|
dfm = to_tensor(dfm).unsqueeze(0).to(color_args['device']) |
|
|
|
output = colorize_without_hint(torch.cat([bw, dfm], 1), color_args) |
|
result = output[0].cpu().permute(1, 2, 0).numpy() * 0.5 + 0.5 |
|
|
|
if pad[0] != 0: |
|
result = result[:-pad[0]] |
|
if pad[1] != 0: |
|
result = result[:, :-pad[1]] |
|
|
|
return result |
|
|
|
def colorize_with_hint(inp, color_args): |
|
with torch.no_grad(): |
|
fake_color, _ = color_args['colorizer'](inp) |
|
|
|
return fake_color |
|
|
|
def process_image_with_hint(bw, dfm, hint, color_args, to_tensor = ToTensor()): |
|
bw = to_tensor(bw).unsqueeze(0).to(color_args['device']) |
|
dfm = to_tensor(dfm).unsqueeze(0).to(color_args['device']) |
|
|
|
i_hint = (torch.FloatTensor(hint[..., :3]).permute(2, 0, 1) - 0.5) / 0.5 |
|
mask = torch.FloatTensor(hint[..., 3:]).permute(2, 0, 1) |
|
i_hint = torch.cat([i_hint * mask, mask], 0).unsqueeze(0).to(color_args['device']) |
|
|
|
output = colorize_with_hint(torch.cat([bw, dfm, i_hint], 1), color_args) |
|
result = output[0].cpu().permute(1, 2, 0).numpy() * 0.5 + 0.5 |
|
|
|
return result |
|
|
|
def colorize_single_image(file_path, save_path, color_args): |
|
try: |
|
image = plt.imread(file_path) |
|
|
|
colorization = process_image(image, color_args) |
|
|
|
plt.imsave(save_path, colorization) |
|
|
|
return True |
|
except KeyboardInterrupt: |
|
sys.exit(0) |
|
except: |
|
print('Failed to colorize {}'.format(file_path)) |
|
return False |
|
|
|
def colorize_images(source_path, target_path, color_args): |
|
images = os.listdir(source_path) |
|
|
|
for image_name in images: |
|
file_path = os.path.join(source_path, image_name) |
|
|
|
name, ext = os.path.splitext(image_name) |
|
if (ext != '.png'): |
|
image_name = name + '.png' |
|
|
|
save_path = os.path.join(target_path, image_name) |
|
colorize_single_image(file_path, save_path, color_args) |
|
|
|
def colorize_cbr(file_path, color_args): |
|
file_name = os.path.splitext(os.path.basename(file_path))[0] |
|
temp_path = 'temp_colorization' |
|
|
|
if not os.path.exists(temp_path): |
|
os.makedirs(temp_path) |
|
extract_cbr(file_path, temp_path) |
|
|
|
images = subfolder_image_search(temp_path) |
|
|
|
result_images = [] |
|
for image_path in images: |
|
save_path = image_path |
|
|
|
path, ext = os.path.splitext(save_path) |
|
if (ext != '.png'): |
|
save_path = path + '.png' |
|
|
|
res_flag = colorize_single_image(image_path, save_path, color_args) |
|
|
|
result_images.append(save_path if res_flag else image_path) |
|
|
|
|
|
result_name = os.path.join(os.path.dirname(file_path), file_name + '_colorized.cbz') |
|
|
|
create_cbz(result_name, result_images) |
|
|
|
remove_folder(temp_path) |
|
|
|
return result_name |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-p", "--path", required=True) |
|
parser.add_argument("-gen", "--generator", default = 'model/generator.pth') |
|
parser.add_argument("-ext", "--extractor", default = 'model/extractor.pth') |
|
parser.add_argument("-s", "--sigma", type = float, default = 0.003) |
|
parser.add_argument('-g', '--gpu', dest = 'gpu', action = 'store_true') |
|
parser.add_argument('-ah', '--auto', dest = 'autohint', action = 'store_true') |
|
parser.add_argument('-ig', '--ignore_grey', dest = 'ignore', action = 'store_true') |
|
parser.add_argument('-nd', '--no_denoise', dest = 'denoiser', action = 'store_false') |
|
parser.add_argument("-ds", "--denoiser_sigma", type = int, default = 25) |
|
parser.set_defaults(gpu = False) |
|
parser.set_defaults(autohint = False) |
|
parser.set_defaults(ignore = False) |
|
parser.set_defaults(denoiser = True) |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
args = parse_args() |
|
|
|
if args.gpu: |
|
device = 'cuda' |
|
else: |
|
device = 'cpu' |
|
|
|
generator = Generator() |
|
generator.load_state_dict(torch.load(args.generator)) |
|
|
|
extractor = get_seresnext_extractor() |
|
extractor.load_state_dict(torch.load(args.extractor)) |
|
|
|
colorizer = Colorizer(generator, extractor) |
|
colorizer = colorizer.eval().to(device) |
|
|
|
sketcher = XDoGSketcher() |
|
xdog_config = open_json('configs/xdog_config.json') |
|
for key in xdog_config.keys(): |
|
if key in sketcher.params: |
|
sketcher.params[key] = xdog_config[key] |
|
|
|
denoiser = None |
|
if args.denoiser: |
|
denoiser = FFDNetDenoiser(device, args.denoiser_sigma) |
|
|
|
color_args = {'colorizer':colorizer, 'sketcher':sketcher, 'auto_hint':args.autohint, 'auto_hint_sigma':args.sigma,\ |
|
'ignore_gray':args.ignore, 'device':device, 'dfm' : True, 'denoiser':denoiser, 'denoiser_sigma' : args.denoiser_sigma} |
|
|
|
|
|
if os.path.isdir(args.path): |
|
colorization_path = os.path.join(args.path, 'colorization') |
|
if not os.path.exists(colorization_path): |
|
os.makedirs(colorization_path) |
|
|
|
colorize_images(args.path, colorization_path, color_args) |
|
|
|
elif os.path.isfile(args.path): |
|
|
|
split = os.path.splitext(args.path) |
|
|
|
if split[1].lower() in ('.cbr', '.cbz', '.rar', '.zip'): |
|
colorize_cbr(args.path, color_args) |
|
elif split[1].lower() in ('.jpg', '.png', ',jpeg'): |
|
new_image_path = split[0] + '_colorized' + '.png' |
|
|
|
colorize_single_image(args.path, new_image_path, color_args) |
|
else: |
|
print('Wrong format') |
|
else: |
|
print('Wrong path') |
|
|
|
|