KayabaEngine commited on
Commit
6d67a58
1 Parent(s): ea14e88

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 244.24 +/- 21.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x792e437429e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792e43742a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792e43742b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792e43742b90>", "_build": "<function ActorCriticPolicy._build at 0x792e43742c20>", "forward": "<function ActorCriticPolicy.forward at 0x792e43742cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x792e43742d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792e43742dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x792e43742e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792e43742ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792e43742f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x792e43743010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792e436e1180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701390490278432093, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMhATwUrJG6gouEtqGjhLHg5zm7UvecNQAAgD8AAIA/883LvcsaEj+A6Fs+MqtXvkiM+Tx4b+O7AAAAAAAAAACzK8s+uKA4P93C9r1/e3S+GbC3PX3z1bwAAAAAAAAAAM1kCLvqU6I/XmtxPB8spL5AN6O8IsESvAAAAAAAAAAAJlaaPekXMLw9Mzs8k7frPM+MoT262b29AACAPwAAgD8zXJu83D2pPhbnlzzCDwS+Ee/HPIp1rbsAAAAAAAAAAM3QRr0AsIE/v+CrPMJHmb7ojy69gFM5vQAAAAAAAAAAZjnIPFtn2z1CffI8Hx04vi7SUz1Z1xO9AAAAAAAAAAAAXCS8YI2aP8bYDL0VkZC+dcCiOM5+WbwAAAAAAAAAAOZdrL1SbL+7aaO2u0cqkjw28ym9Vh13PQAAgD8AAIA/5v2jvQ0lpD/afzm+PWO7vksUDb6io0e6AAAAAAAAAADNtds8de+EPnImX7wh71O+EeKdu7M2Eb4AAAAAAAAAAJr4a70QE8o+396xvbkrQ74dvpG9mnaEvQAAAAAAAAAAM/eGOzoJtT+wl9U+jNIbPtUqnLsOh8G9AAAAAAAAAACNZ20+jSSMP64bFT7gEZy+F6MVPiqPcb0AAAAAAAAAAPNGqb32MQW86s+OO8ernDx9Moi9Gj6CPQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDQMoUi6hCMAWyUTV8BjAF0lEdAkwnktqYZ23V9lChoBkdAcX3tTkyULWgHTUwBaAhHQJMJ8lRgqmV1fZQoaAZHQG8g8YIjW09oB01QAWgIR0CTCjwn6VMVdX2UKGgGR0BrdzOTq0MPaAdNJwFoCEdAkwuHwPRRdnV9lChoBkdAcCOdLg4wRGgHTU0BaAhHQJMN2pHZsbh1fZQoaAZHQG8sZ08vEjxoB01ZAWgIR0CTJAYwZflZdX2UKGgGR0Bwk1zRx95RaAdNPQFoCEdAkyQXfVI7NnV9lChoBkdAchsDQJHAh2gHTaQBaAhHQJMkhfiPyTZ1fZQoaAZHQG+dxHPNVzZoB01DAWgIR0CTJLT0xubadX2UKGgGR0BwP7iCJ40NaAdNSgFoCEdAkyUnVTaTOnV9lChoBkdAb2PlFtsN2GgHTTsBaAhHQJMlnW07bL51fZQoaAZHQHFK3OfNA1NoB014AWgIR0CTJgoTPBzndX2UKGgGR0BrwKoddVvNaAdNSgFoCEdAkya/0Zm7KHV9lChoBkdAcVb6k690zWgHTU0BaAhHQJMmyRRuTA51fZQoaAZHQG5tkYoAn2JoB01wAWgIR0CTJxpmVZ9vdX2UKGgGR0Bts+HFglWwaAdNWwFoCEdAkyiAQcxTKnV9lChoBkdAcTV1Oj7AL2gHTSUBaAhHQJMornfVI7N1fZQoaAZHQGwqCr92ovVoB001AWgIR0CTKXCa7VawdX2UKGgGR0BwIDthNM4+aAdNeAFoCEdAkytMI7eVLXV9lChoBkdAbzS+mFaje2gHTVwBaAhHQJMrr3QD3dt1fZQoaAZHQG/f8ZtNzsBoB01FAWgIR0CTLGWuHN5ddX2UKGgGR0BwexZid8RdaAdNOwFoCEdAky9WSIP9UHV9lChoBkdAbc8ZHd43WGgHTUgBaAhHQJMv2q5sj3V1fZQoaAZHQG3SmcFyJbdoB01MAWgIR0CTMGjAzpHJdX2UKGgGR0Bw1etV7x/eaAdNLAFoCEdAkzCzposZpHV9lChoBkdAb7DNhVlwtWgHTUkBaAhHQJMw6ad+Xqt1fZQoaAZHQG9ad/rjYI1oB009AWgIR0CTMOliz9jxdX2UKGgGR0Bw2BbSqlxfaAdNFwFoCEdAkzEDvAoG6nV9lChoBkdAbxzqIJqqO2gHTWwBaAhHQJMxuX+l0o11fZQoaAZHQG4uLuhK15VoB01KAWgIR0CTMmlwtJ4CdX2UKGgGR0ByCnGhmGucaAdNYgFoCEdAkzMmC2+fy3V9lChoBkdAcAcoG6f8M2gHTTABaAhHQJMzUBHTZxt1fZQoaAZHQHA1YbOu7pVoB014AWgIR0CTNXu+RHPNdX2UKGgGR0BxnKA8SwnqaAdNGQFoCEdAkzZqG1x82XV9lChoBkdAb/R7VrhzeWgHTXYBaAhHQJM2dCCz1K51fZQoaAZHQHE6VolD4QBoB003AWgIR0CTNrZYPoV3dX2UKGgGR0ByVXfgrH2iaAdNTwFoCEdAkzcd1uBMBnV9lChoBkdAb0ZY7q6e5GgHTTMBaAhHQJM7bqJMxoJ1fZQoaAZHQG0kpN9H+ZRoB01XAWgIR0CTPA1VHWjHdX2UKGgGR0BwRDmlqJuVaAdNTwFoCEdAkzxO89Oh03V9lChoBkdAchhfnOjZc2gHTT8BaAhHQJM86rBCUot1fZQoaAZHQG/X0HyEtd1oB01HAWgIR0CTPRb1RLsbdX2UKGgGR0Bwnwz544ZNaAdNRAFoCEdAkz1X+6y0KXV9lChoBkdAcYmMSsbNr2gHTTMBaAhHQJM9jMhX8wZ1fZQoaAZHQG5equB+WnloB01LAWgIR0CTP6wkxASndX2UKGgGR0BwH0Nwzch1aAdNOgFoCEdAk0A3fhuO0nV9lChoBkdAcInoxHoX9GgHTScBaAhHQJNDzPcBU711fZQoaAZHQG0Qkgntv4xoB01EAWgIR0CTQ/TER8MNdX2UKGgGR0Bw/WYLLIPtaAdNPwFoCEdAk0VKx5cC5nV9lChoBkdAcgEr+o99t2gHTV0BaAhHQJNGYf/3nIR1fZQoaAZHQHJDcyzolldoB01wAWgIR0CTSHQ1JlJ6dX2UKGgGR0BsbFeKKpDNaAdNOwFoCEdAk1zNmL9/BnV9lChoBkdAb9JmQKa5PWgHTVcBaAhHQJNdu801qFh1fZQoaAZHQG6mRxkupS9oB01HAWgIR0CTXiDxb0OFdX2UKGgGR0Bsbtw97ngYaAdNSwFoCEdAk16yMPz4DnV9lChoBkdAbjC3WFvhqGgHTWABaAhHQJNe2OEM9bJ1fZQoaAZHQGyvXkgfU4JoB01kAWgIR0CTX4642CNCdX2UKGgGR0BuCVH2AXl9aAdNewFoCEdAk2DX/xUedXV9lChoBkdAcHRrt3OfNGgHTVcBaAhHQJNhMUQCjlB1fZQoaAZHQHJCHndO6/ZoB01RAWgIR0CTZFmsvIwNdX2UKGgGR0ByhVU+9rXUaAdNUAFoCEdAk2RuAEt/WnV9lChoBkdAbwKkzGgi/2gHTccBaAhHQJNmIh9srNJ1fZQoaAZHQG+QOx0MgEFoB01vAWgIR0CTZspjMFEBdX2UKGgGR0Br556KLsKLaAdNYQFoCEdAk2ca+JxecHV9lChoBkdAcXC+XqqwQmgHTTQBaAhHQJNpZvm5lOJ1fZQoaAZHQHJDCXQdCE9oB02BAWgIR0CTadq/dqL1dX2UKGgGR0BxrwJ3PiT/aAdNJgFoCEdAk2nkBGQSz3V9lChoBkdAbhVomois4mgHTVABaAhHQJNrMC+10DF1fZQoaAZHQHJ01CPZIxxoB007AWgIR0CTa0obn5i3dX2UKGgGR0BaNDRx95QhaAdN6ANoCEdAk2wtN8E3bXV9lChoBkdAbQb41P3ztmgHTS8BaAhHQJNs9r8BMi91fZQoaAZHQG/Pm+9Jz1doB01DAWgIR0CTbVuZkTYedX2UKGgGR0BxFFzGPxQSaAdNegFoCEdAk24c6RyOrHV9lChoBkdAa5uDsdDIBGgHTZcBaAhHQJNuZfJFLFp1fZQoaAZHQGJ91B2OhkBoB03oA2gIR0CTbn5tm+TNdX2UKGgGR0BxX8G3WnTBaAdNbQFoCEdAk3HD7qIJq3V9lChoBkdAcGYoBaLXMGgHTW8BaAhHQJNx6TQmeDp1fZQoaAZHQHAWo5PuXu5oB01eAWgIR0CTctvCMxXXdX2UKGgGR0BwIj4UN8VpaAdNIgFoCEdAk3SqtPpIMHV9lChoBkdAcXyNI9TxXmgHTZIBaAhHQJN2b1pTMq11fZQoaAZHQG/O+p4rz5JoB01RAWgIR0CTdq2cJ+lTdX2UKGgGR0BvKiiblRxcaAdNZwFoCEdAk3ivN3W4E3V9lChoBkdAcHAkwevIO2gHTbMBaAhHQJN42m8/Uvx1fZQoaAZHQG2yKdYnv2JoB01ZAWgIR0CTee6E8JUpdX2UKGgGR0Bw3U6/7BO6aAdNUQFoCEdAk3rSvxH5J3V9lChoBkdAcYcKpDNQj2gHTVABaAhHQJN79qk/KQt1fZQoaAZHQG3jDR2KVIJoB01MAWgIR0CTfFbb1yvLdX2UKGgGR0BwIFZ6lchUaAdNQQFoCEdAk31l7tzCDXV9lChoBkdAcMJ7tRekYWgHTVIBaAhHQJN+VGWldkd1fZQoaAZHQG4hryMDOkdoB01zAWgIR0CTf006HTJAdX2UKGgGR0Bu2wbdadMCaAdNGQFoCEdAk4A5R4yGjHV9lChoBkdAcfE5xR2r4mgHTeABaAhHQJOAfX7Lt/p1fZQoaAZHQHAEKagElmhoB01DAWgIR0CTgdv8qFyrdX2UKGgGR0BwPzgFX7tRaAdNMwFoCEdAk4J212JSBXV9lChoBkdAa8RGe+VTrGgHTToBaAhHQJOEalSCOFR1fZQoaAZHQGslnlOoHcFoB00tAWgIR0CThVeXiR4hdX2UKGgGR0BtYgvN/vv0aAdNGwFoCEdAk4bKUVzp5nV9lChoBkdAcdC5MURFqmgHTVcBaAhHQJOGyvX9R791fZQoaAZHQGzi4M4LkS5oB00ZAWgIR0CTh1LW7OE/dX2UKGgGR0Bsurkn1FpgaAdNTwFoCEdAk4fg4n4O+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a228e32c55f4b81eb3f692a0082edd06df8b21586d0d0e93eb1288555497b1d9
3
+ size 148058
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x792e437429e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792e43742a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792e43742b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792e43742b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x792e43742c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x792e43742cb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x792e43742d40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792e43742dd0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x792e43742e60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792e43742ef0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792e43742f80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x792e43743010>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x792e436e1180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701390490278432093,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMhATwUrJG6gouEtqGjhLHg5zm7UvecNQAAgD8AAIA/883LvcsaEj+A6Fs+MqtXvkiM+Tx4b+O7AAAAAAAAAACzK8s+uKA4P93C9r1/e3S+GbC3PX3z1bwAAAAAAAAAAM1kCLvqU6I/XmtxPB8spL5AN6O8IsESvAAAAAAAAAAAJlaaPekXMLw9Mzs8k7frPM+MoT262b29AACAPwAAgD8zXJu83D2pPhbnlzzCDwS+Ee/HPIp1rbsAAAAAAAAAAM3QRr0AsIE/v+CrPMJHmb7ojy69gFM5vQAAAAAAAAAAZjnIPFtn2z1CffI8Hx04vi7SUz1Z1xO9AAAAAAAAAAAAXCS8YI2aP8bYDL0VkZC+dcCiOM5+WbwAAAAAAAAAAOZdrL1SbL+7aaO2u0cqkjw28ym9Vh13PQAAgD8AAIA/5v2jvQ0lpD/afzm+PWO7vksUDb6io0e6AAAAAAAAAADNtds8de+EPnImX7wh71O+EeKdu7M2Eb4AAAAAAAAAAJr4a70QE8o+396xvbkrQ74dvpG9mnaEvQAAAAAAAAAAM/eGOzoJtT+wl9U+jNIbPtUqnLsOh8G9AAAAAAAAAACNZ20+jSSMP64bFT7gEZy+F6MVPiqPcb0AAAAAAAAAAPNGqb32MQW86s+OO8ernDx9Moi9Gj6CPQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDQMoUi6hCMAWyUTV8BjAF0lEdAkwnktqYZ23V9lChoBkdAcX3tTkyULWgHTUwBaAhHQJMJ8lRgqmV1fZQoaAZHQG8g8YIjW09oB01QAWgIR0CTCjwn6VMVdX2UKGgGR0BrdzOTq0MPaAdNJwFoCEdAkwuHwPRRdnV9lChoBkdAcCOdLg4wRGgHTU0BaAhHQJMN2pHZsbh1fZQoaAZHQG8sZ08vEjxoB01ZAWgIR0CTJAYwZflZdX2UKGgGR0Bwk1zRx95RaAdNPQFoCEdAkyQXfVI7NnV9lChoBkdAchsDQJHAh2gHTaQBaAhHQJMkhfiPyTZ1fZQoaAZHQG+dxHPNVzZoB01DAWgIR0CTJLT0xubadX2UKGgGR0BwP7iCJ40NaAdNSgFoCEdAkyUnVTaTOnV9lChoBkdAb2PlFtsN2GgHTTsBaAhHQJMlnW07bL51fZQoaAZHQHFK3OfNA1NoB014AWgIR0CTJgoTPBzndX2UKGgGR0BrwKoddVvNaAdNSgFoCEdAkya/0Zm7KHV9lChoBkdAcVb6k690zWgHTU0BaAhHQJMmyRRuTA51fZQoaAZHQG5tkYoAn2JoB01wAWgIR0CTJxpmVZ9vdX2UKGgGR0Bts+HFglWwaAdNWwFoCEdAkyiAQcxTKnV9lChoBkdAcTV1Oj7AL2gHTSUBaAhHQJMornfVI7N1fZQoaAZHQGwqCr92ovVoB001AWgIR0CTKXCa7VawdX2UKGgGR0BwIDthNM4+aAdNeAFoCEdAkytMI7eVLXV9lChoBkdAbzS+mFaje2gHTVwBaAhHQJMrr3QD3dt1fZQoaAZHQG/f8ZtNzsBoB01FAWgIR0CTLGWuHN5ddX2UKGgGR0BwexZid8RdaAdNOwFoCEdAky9WSIP9UHV9lChoBkdAbc8ZHd43WGgHTUgBaAhHQJMv2q5sj3V1fZQoaAZHQG3SmcFyJbdoB01MAWgIR0CTMGjAzpHJdX2UKGgGR0Bw1etV7x/eaAdNLAFoCEdAkzCzposZpHV9lChoBkdAb7DNhVlwtWgHTUkBaAhHQJMw6ad+Xqt1fZQoaAZHQG9ad/rjYI1oB009AWgIR0CTMOliz9jxdX2UKGgGR0Bw2BbSqlxfaAdNFwFoCEdAkzEDvAoG6nV9lChoBkdAbxzqIJqqO2gHTWwBaAhHQJMxuX+l0o11fZQoaAZHQG4uLuhK15VoB01KAWgIR0CTMmlwtJ4CdX2UKGgGR0ByCnGhmGucaAdNYgFoCEdAkzMmC2+fy3V9lChoBkdAcAcoG6f8M2gHTTABaAhHQJMzUBHTZxt1fZQoaAZHQHA1YbOu7pVoB014AWgIR0CTNXu+RHPNdX2UKGgGR0BxnKA8SwnqaAdNGQFoCEdAkzZqG1x82XV9lChoBkdAb/R7VrhzeWgHTXYBaAhHQJM2dCCz1K51fZQoaAZHQHE6VolD4QBoB003AWgIR0CTNrZYPoV3dX2UKGgGR0ByVXfgrH2iaAdNTwFoCEdAkzcd1uBMBnV9lChoBkdAb0ZY7q6e5GgHTTMBaAhHQJM7bqJMxoJ1fZQoaAZHQG0kpN9H+ZRoB01XAWgIR0CTPA1VHWjHdX2UKGgGR0BwRDmlqJuVaAdNTwFoCEdAkzxO89Oh03V9lChoBkdAchhfnOjZc2gHTT8BaAhHQJM86rBCUot1fZQoaAZHQG/X0HyEtd1oB01HAWgIR0CTPRb1RLsbdX2UKGgGR0Bwnwz544ZNaAdNRAFoCEdAkz1X+6y0KXV9lChoBkdAcYmMSsbNr2gHTTMBaAhHQJM9jMhX8wZ1fZQoaAZHQG5equB+WnloB01LAWgIR0CTP6wkxASndX2UKGgGR0BwH0Nwzch1aAdNOgFoCEdAk0A3fhuO0nV9lChoBkdAcInoxHoX9GgHTScBaAhHQJNDzPcBU711fZQoaAZHQG0Qkgntv4xoB01EAWgIR0CTQ/TER8MNdX2UKGgGR0Bw/WYLLIPtaAdNPwFoCEdAk0VKx5cC5nV9lChoBkdAcgEr+o99t2gHTV0BaAhHQJNGYf/3nIR1fZQoaAZHQHJDcyzolldoB01wAWgIR0CTSHQ1JlJ6dX2UKGgGR0BsbFeKKpDNaAdNOwFoCEdAk1zNmL9/BnV9lChoBkdAb9JmQKa5PWgHTVcBaAhHQJNdu801qFh1fZQoaAZHQG6mRxkupS9oB01HAWgIR0CTXiDxb0OFdX2UKGgGR0Bsbtw97ngYaAdNSwFoCEdAk16yMPz4DnV9lChoBkdAbjC3WFvhqGgHTWABaAhHQJNe2OEM9bJ1fZQoaAZHQGyvXkgfU4JoB01kAWgIR0CTX4642CNCdX2UKGgGR0BuCVH2AXl9aAdNewFoCEdAk2DX/xUedXV9lChoBkdAcHRrt3OfNGgHTVcBaAhHQJNhMUQCjlB1fZQoaAZHQHJCHndO6/ZoB01RAWgIR0CTZFmsvIwNdX2UKGgGR0ByhVU+9rXUaAdNUAFoCEdAk2RuAEt/WnV9lChoBkdAbwKkzGgi/2gHTccBaAhHQJNmIh9srNJ1fZQoaAZHQG+QOx0MgEFoB01vAWgIR0CTZspjMFEBdX2UKGgGR0Br556KLsKLaAdNYQFoCEdAk2ca+JxecHV9lChoBkdAcXC+XqqwQmgHTTQBaAhHQJNpZvm5lOJ1fZQoaAZHQHJDCXQdCE9oB02BAWgIR0CTadq/dqL1dX2UKGgGR0BxrwJ3PiT/aAdNJgFoCEdAk2nkBGQSz3V9lChoBkdAbhVomois4mgHTVABaAhHQJNrMC+10DF1fZQoaAZHQHJ01CPZIxxoB007AWgIR0CTa0obn5i3dX2UKGgGR0BaNDRx95QhaAdN6ANoCEdAk2wtN8E3bXV9lChoBkdAbQb41P3ztmgHTS8BaAhHQJNs9r8BMi91fZQoaAZHQG/Pm+9Jz1doB01DAWgIR0CTbVuZkTYedX2UKGgGR0BxFFzGPxQSaAdNegFoCEdAk24c6RyOrHV9lChoBkdAa5uDsdDIBGgHTZcBaAhHQJNuZfJFLFp1fZQoaAZHQGJ91B2OhkBoB03oA2gIR0CTbn5tm+TNdX2UKGgGR0BxX8G3WnTBaAdNbQFoCEdAk3HD7qIJq3V9lChoBkdAcGYoBaLXMGgHTW8BaAhHQJNx6TQmeDp1fZQoaAZHQHAWo5PuXu5oB01eAWgIR0CTctvCMxXXdX2UKGgGR0BwIj4UN8VpaAdNIgFoCEdAk3SqtPpIMHV9lChoBkdAcXyNI9TxXmgHTZIBaAhHQJN2b1pTMq11fZQoaAZHQG/O+p4rz5JoB01RAWgIR0CTdq2cJ+lTdX2UKGgGR0BvKiiblRxcaAdNZwFoCEdAk3ivN3W4E3V9lChoBkdAcHAkwevIO2gHTbMBaAhHQJN42m8/Uvx1fZQoaAZHQG2yKdYnv2JoB01ZAWgIR0CTee6E8JUpdX2UKGgGR0Bw3U6/7BO6aAdNUQFoCEdAk3rSvxH5J3V9lChoBkdAcYcKpDNQj2gHTVABaAhHQJN79qk/KQt1fZQoaAZHQG3jDR2KVIJoB01MAWgIR0CTfFbb1yvLdX2UKGgGR0BwIFZ6lchUaAdNQQFoCEdAk31l7tzCDXV9lChoBkdAcMJ7tRekYWgHTVIBaAhHQJN+VGWldkd1fZQoaAZHQG4hryMDOkdoB01zAWgIR0CTf006HTJAdX2UKGgGR0Bu2wbdadMCaAdNGQFoCEdAk4A5R4yGjHV9lChoBkdAcfE5xR2r4mgHTeABaAhHQJOAfX7Lt/p1fZQoaAZHQHAEKagElmhoB01DAWgIR0CTgdv8qFyrdX2UKGgGR0BwPzgFX7tRaAdNMwFoCEdAk4J212JSBXV9lChoBkdAa8RGe+VTrGgHTToBaAhHQJOEalSCOFR1fZQoaAZHQGslnlOoHcFoB00tAWgIR0CThVeXiR4hdX2UKGgGR0BtYgvN/vv0aAdNGwFoCEdAk4bKUVzp5nV9lChoBkdAcdC5MURFqmgHTVcBaAhHQJOGyvX9R791fZQoaAZHQGzi4M4LkS5oB00ZAWgIR0CTh1LW7OE/dX2UKGgGR0Bsurkn1FpgaAdNTwFoCEdAk4fg4n4O+nVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5cd49dd7c34385fec1a4cb2baa7fe6f43c98333fecac21bd7bc3e104fd6897d
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac368877324a3e5ae59a3153b671509799e48bdf7c7b403d8517dc73e4d37d6d
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (165 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 244.2358950667593, "std_reward": 21.138753793382776, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-01T00:49:29.929789"}