KayabaEngine commited on
Commit
020d69a
1 Parent(s): fbadd3f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.25 +/- 0.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed7ff52ec077f0d259464816a9ed69d1d6ad03cd3b3fe98f5a93eb26a3bae42d
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cb36dd113f0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7cb36dcffa00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1697701482147757568,
28
+ "learning_rate": 0.001,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiUK0PoTAVzxFwvk+U+TKvuUU5z4OZM8+xlvOvnt26r7i1dE+X6GSP3Twnb9H1Gi+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAukAcP9nWuz+Tp8s+YLGjv1pcqT8jv/g+LXFZv1fRa7+7tNk/qwe7Pykzfb8Vof29lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACJQrQ+hMBXPEXC+T6V4co+p+kNu312rj5T5Mq+5RTnPg5kzz6BcVS/lLnZPwfJWz/GW86+e3bqvuLV0T5Q52O/CtHYv5UzXz9foZI/dPCdv0fUaL6nEr4+oexev9yINb+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.35207012 0.01316846 0.48781028]\n [-0.39627323 0.4513313 0.40506023]\n [-0.40304393 -0.45793518 0.40983492]\n [ 1.1455497 -1.2339005 -0.22737227]]",
34
+ "desired_goal": "[[ 0.61036265 1.4674941 0.39776286]\n [-1.2788506 1.3231308 0.48583326]\n [-0.8493832 -0.921163 1.700828 ]\n [ 1.4611715 -0.9890619 -0.1238424 ]]",
35
+ "observation": "[[ 0.35207012 0.01316846 0.48781028 0.3962523 -0.00216542 0.34074774]\n [-0.39627323 0.4513313 0.40506023 -0.82985693 1.7009759 0.8585362 ]\n [-0.40304393 -0.45793518 0.40983492 -0.8902483 -1.6938794 0.8718808 ]\n [ 1.1455497 -1.2339005 -0.22737227 0.37123606 -0.8707982 -0.70911956]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiaO6vaFM3D3SKpM9WkTIPa/MlD25V9I9UP+XPThwpjubxZU+SyIYPrLB3T01Psc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.09113223 0.10756803 0.07185902]\n [ 0.09778662 0.07265603 0.10270638]\n [ 0.07421744 0.0050793 0.29252324]\n [ 0.14856832 0.1082796 0.09728662]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9gFwDNhVlyMAWyUSwWMAXSUR0Ci76n9ehPCdX2UKGgGR7/LlJ6IFeOXaAdLA2gIR0Ci71OnuRcNdX2UKGgGR7+1cRlHz6JqaAdLAmgIR0Ci7wiHRCyAdX2UKGgGR7/JUKArhBJJaAdLA2gIR0Ci8A8u8K5TdX2UKGgGR7/WPe54GD+SaAdLA2gIR0Ci77YgA6uGdX2UKGgGR7/QcUdq+JxeaAdLA2gIR0Ci71/mcOLBdX2UKGgGR7/iw8fV7Qb/aAdLBWgIR0Ci7xxOLzf8dX2UKGgGR7/J4k/r0J4TaAdLA2gIR0Ci78INVinYdX2UKGgGR7/R8TSLIgeSaAdLA2gIR0Ci72vEbYK6dX2UKGgGR7/Uy2x6fJ3gaAdLBGgIR0Ci8B++mFajdX2UKGgGR7+lld1MdtEYaAdLAWgIR0Ci73BakhzOdX2UKGgGR7/R4TbnHNoraAdLA2gIR0Ci7ynE/B3zdX2UKGgGR7/SXL/0dzXCaAdLA2gIR0Ci78+GoJiRdX2UKGgGR7/WPnjhky1vaAdLBGgIR0Ci8DCo0hvBdX2UKGgGR7+4QGwA2hqTaAdLAmgIR0Ci79dkrf+CdX2UKGgGR7/emmce8wpOaAdLBGgIR0Ci74ENWluWdX2UKGgGR7/QajesPrfMaAdLA2gIR0Ci7zXRPXTWdX2UKGgGR7/E5TZQHiWFaAdLAmgIR0Ci8DieNDMNdX2UKGgGR7/LuXu3MINWaAdLA2gIR0Ci7+M7lq8EdX2UKGgGR7/SAs052hZhaAdLA2gIR0Ci74zdtVJddX2UKGgGR7/MYIjW07bMaAdLA2gIR0Ci70Gj0tiAdX2UKGgGR7+4JUo8ZDRdaAdLAmgIR0Ci8EDzI3irdX2UKGgGR7/DISUTtb9qaAdLAmgIR0Ci75VPN3W4dX2UKGgGR7/VQFcIJJGwaAdLA2gIR0Ci7+/mDDjzdX2UKGgGR7+XLeQ+2VmjaAdLAWgIR0Ci75l6Rhc8dX2UKGgGR7/XQnhKlHjIaAdLBWgIR0Ci71Xt8eCDdX2UKGgGR7/SLpRoAXEZaAdLA2gIR0Ci7/vVNHpbdX2UKGgGR7/HcnE2pAD8aAdLA2gIR0Ci76XA/LTydX2UKGgGR7+5oK2KEWZaaAdLAmgIR0Ci762xQizLdX2UKGgGR7/R3IdU83dcaAdLA2gIR0Ci72Jw84gidX2UKGgGR7/iustCiRGMaAdLCGgIR0Ci8GGXgLqmdX2UKGgGR7/Ql6Z6Uqx1aAdLA2gIR0Ci8AiCaqjrdX2UKGgGR7+VYISlFc6eaAdLAWgIR0Ci77In0CiidX2UKGgGR7/SOLzf779AaAdLA2gIR0Ci727m+0w8dX2UKGgGR7/HxuKoAGSqaAdLA2gIR0Ci8G5c1O0tdX2UKGgGR7/ImVqveP7vaAdLA2gIR0Ci8BVR+BpYdX2UKGgGR7/FKFqSHM2WaAdLA2gIR0Ci778JD3M7dX2UKGgGR7/Ag+QlruYyaAdLAmgIR0Ci8HbYTTOPdX2UKGgGR7/QVObiIcioaAdLA2gIR0Ci73vXTVlPdX2UKGgGR7/SCgK4QSSNaAdLA2gIR0Ci8CGXokiVdX2UKGgGR7/SsguAZsKtaAdLA2gIR0Ci78tAC4jKdX2UKGgGR7+4bGWD6FdtaAdLAmgIR0Ci74OXmeUZdX2UKGgGR7/PVR1oxpL3aAdLA2gIR0Ci8IK7ZnL8dX2UKGgGR7/AYP5HmRvFaAdLAmgIR0Ci79MiSq2jdX2UKGgGR7+7Y150KZ2IaAdLAmgIR0Ci8Irgn+hodX2UKGgGR7/QtNi6QNkOaAdLBGgIR0Ci8DG7SRbKdX2UKGgGR7/Wo0ygwoLHaAdLBGgIR0Ci75QJokAxdX2UKGgGR7+3B3zMA3kxaAdLAmgIR0Ci8Dmvnr6ddX2UKGgGR7/XOHFglWwNaAdLBGgIR0Ci7+NEG7jDdX2UKGgGR7/JqIrOJLuhaAdLA2gIR0Ci8JcTzunddX2UKGgGR7+0UN8VpKzzaAdLAmgIR0Ci7+uGsV+JdX2UKGgGR7/TuhsZYPoWaAdLA2gIR0Ci76BfShJzdX2UKGgGR7/JwNLDhtLtaAdLA2gIR0Ci8EYoiLVGdX2UKGgGR7/MeT3Zf2K3aAdLA2gIR0Ci8KNVrAP/dX2UKGgGR7/CorFwT/Q0aAdLAmgIR0Ci76hIFvAHdX2UKGgGR7/G51/2Cdz5aAdLA2gIR0Ci8FIN/e+FdX2UKGgGR7/cA2ycCo0iaAdLBGgIR0Ci7/u4gA6udX2UKGgGR7/NihFmWdEtaAdLA2gIR0Ci8K+qaPS2dX2UKGgGR7/Otuk1uR9xaAdLA2gIR0Ci77SrxRVIdX2UKGgGR7+ob83uNPxhaAdLAWgIR0Ci77iF0xM4dX2UKGgGR7/Srfcer+5waAdLA2gIR0Ci8F5tFa0QdX2UKGgGR7/HVn27FsHjaAdLA2gIR0Ci8AgCwKSgdX2UKGgGR7/aGIbfgrH3aAdLBGgIR0Ci8L82BJ7LdX2UKGgGR7/A8GLUCq6waAdLAmgIR0Ci8A912aDxdX2UKGgGR7/V0/nnuAqeaAdLA2gIR0Ci8Gnf2saLdX2UKGgGR7/aG9pRGc4HaAdLBGgIR0Ci78gBLf1pdX2UKGgGR7/A1jRUm2LHaAdLAmgIR0Ci8BcaXKKYdX2UKGgGR7/RLUkOZssQaAdLA2gIR0Ci8Mradtl7dX2UKGgGR7+1xR2r4nF6aAdLAmgIR0Ci8HGlANXpdX2UKGgGR7+2lBQemvW6aAdLAmgIR0Ci78/hMrVfdX2UKGgGR7+5Nvfj0cwQaAdLAmgIR0Ci8B8L0BfbdX2UKGgGR7/WBhhH9WIXaAdLA2gIR0Ci8NYsd1dPdX2UKGgGR7/Oza9K28ZlaAdLA2gIR0Ci79suez2OdX2UKGgGR7/WKwpvxYq5aAdLBGgIR0Ci8IDurp7kdX2UKGgGR7/SX9R77bcoaAdLA2gIR0Ci8Cq+BYmtdX2UKGgGR7+0xN7BwdbQaAdLAmgIR0Ci8N6QvHtGdX2UKGgGR7/NJMg2ZRbbaAdLA2gIR0Ci7+cT8HfNdX2UKGgGR7/I5XEIgNgCaAdLA2gIR0Ci8I0x20RfdX2UKGgGR7/MRHPNVzZIaAdLA2gIR0Ci8OqCpWFOdX2UKGgGR7+fAbhm5DqoaAdLAWgIR0Ci8JFjEvTPdX2UKGgGR7/EEs8PnSv1aAdLAmgIR0Ci7++3x4IKdX2UKGgGR7/Y7O3UhFEzaAdLBWgIR0Ci8D8FY+0PdX2UKGgGR7/JqGlANXo1aAdLA2gIR0Ci8Pa4tpVTdX2UKGgGR7/N+KjzqbBoaAdLA2gIR0Ci8J2dmQKbdX2UKGgGR7/Q4mTkhib2aAdLA2gIR0Ci7/wSamXPdX2UKGgGR7+oUBXCCSRsaAdLAWgIR0Ci8PtxMnJDdX2UKGgGR7+k5n13+uNhaAdLAWgIR0Ci8KJcPe54dX2UKGgGR7/McNH6MzdlaAdLA2gIR0Ci8Ewl0HQhdX2UKGgGR7+3jkuHvc8DaAdLAmgIR0Ci8Kq9oN/fdX2UKGgGR7/TKXfIjnmraAdLA2gIR0Ci8AkoWpIddX2UKGgGR7/QEofCAMDwaAdLA2gIR0Ci8QhxxT86dX2UKGgGR7/QdRR/EwWWaAdLA2gIR0Ci8FiY9gWrdX2UKGgGR7+fQ4S6DoQnaAdLAWgIR0Ci8FyJKraNdX2UKGgGR7/L1HOKO1fFaAdLA2gIR0Ci8LdKujh2dX2UKGgGR7/MxxkupS75aAdLA2gIR0Ci8BWuxKQJdX2UKGgGR7/TUSZjQRf4aAdLA2gIR0Ci8RTe40/GdX2UKGgGR7/CCWeHzpX7aAdLAmgIR0Ci8B3rD63zdX2UKGgGR7/HZpztCzC2aAdLA2gIR0Ci8MPepGWldX2UKGgGR7/W/M4cWCVbaAdLBGgIR0Ci8G2Rq46PdX2UKGgGR7/MBdUsFt9AaAdLA2gIR0Ci8SFl9SdfdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 250,
62
+ "n_steps": 1000,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66657a6eb683419d1e0525275591aa7a4d79d8d27a27dec98728f7e7738cf8e2
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3843b55fb2f53942ea92446970e4d387a9aa3d86b6107ba3765d1131b7fd36da
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cb36dd113f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cb36dcffa00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697701482147757568, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiUK0PoTAVzxFwvk+U+TKvuUU5z4OZM8+xlvOvnt26r7i1dE+X6GSP3Twnb9H1Gi+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAukAcP9nWuz+Tp8s+YLGjv1pcqT8jv/g+LXFZv1fRa7+7tNk/qwe7Pykzfb8Vof29lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACJQrQ+hMBXPEXC+T6V4co+p+kNu312rj5T5Mq+5RTnPg5kzz6BcVS/lLnZPwfJWz/GW86+e3bqvuLV0T5Q52O/CtHYv5UzXz9foZI/dPCdv0fUaL6nEr4+oexev9yINb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.35207012 0.01316846 0.48781028]\n [-0.39627323 0.4513313 0.40506023]\n [-0.40304393 -0.45793518 0.40983492]\n [ 1.1455497 -1.2339005 -0.22737227]]", "desired_goal": "[[ 0.61036265 1.4674941 0.39776286]\n [-1.2788506 1.3231308 0.48583326]\n [-0.8493832 -0.921163 1.700828 ]\n [ 1.4611715 -0.9890619 -0.1238424 ]]", "observation": "[[ 0.35207012 0.01316846 0.48781028 0.3962523 -0.00216542 0.34074774]\n [-0.39627323 0.4513313 0.40506023 -0.82985693 1.7009759 0.8585362 ]\n [-0.40304393 -0.45793518 0.40983492 -0.8902483 -1.6938794 0.8718808 ]\n [ 1.1455497 -1.2339005 -0.22737227 0.37123606 -0.8707982 -0.70911956]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiaO6vaFM3D3SKpM9WkTIPa/MlD25V9I9UP+XPThwpjubxZU+SyIYPrLB3T01Psc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09113223 0.10756803 0.07185902]\n [ 0.09778662 0.07265603 0.10270638]\n [ 0.07421744 0.0050793 0.29252324]\n [ 0.14856832 0.1082796 0.09728662]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9gFwDNhVlyMAWyUSwWMAXSUR0Ci76n9ehPCdX2UKGgGR7/LlJ6IFeOXaAdLA2gIR0Ci71OnuRcNdX2UKGgGR7+1cRlHz6JqaAdLAmgIR0Ci7wiHRCyAdX2UKGgGR7/JUKArhBJJaAdLA2gIR0Ci8A8u8K5TdX2UKGgGR7/WPe54GD+SaAdLA2gIR0Ci77YgA6uGdX2UKGgGR7/QcUdq+JxeaAdLA2gIR0Ci71/mcOLBdX2UKGgGR7/iw8fV7Qb/aAdLBWgIR0Ci7xxOLzf8dX2UKGgGR7/J4k/r0J4TaAdLA2gIR0Ci78INVinYdX2UKGgGR7/R8TSLIgeSaAdLA2gIR0Ci72vEbYK6dX2UKGgGR7/Uy2x6fJ3gaAdLBGgIR0Ci8B++mFajdX2UKGgGR7+lld1MdtEYaAdLAWgIR0Ci73BakhzOdX2UKGgGR7/R4TbnHNoraAdLA2gIR0Ci7ynE/B3zdX2UKGgGR7/SXL/0dzXCaAdLA2gIR0Ci78+GoJiRdX2UKGgGR7/WPnjhky1vaAdLBGgIR0Ci8DCo0hvBdX2UKGgGR7+4QGwA2hqTaAdLAmgIR0Ci79dkrf+CdX2UKGgGR7/emmce8wpOaAdLBGgIR0Ci74ENWluWdX2UKGgGR7/QajesPrfMaAdLA2gIR0Ci7zXRPXTWdX2UKGgGR7/E5TZQHiWFaAdLAmgIR0Ci8DieNDMNdX2UKGgGR7/LuXu3MINWaAdLA2gIR0Ci7+M7lq8EdX2UKGgGR7/SAs052hZhaAdLA2gIR0Ci74zdtVJddX2UKGgGR7/MYIjW07bMaAdLA2gIR0Ci70Gj0tiAdX2UKGgGR7+4JUo8ZDRdaAdLAmgIR0Ci8EDzI3irdX2UKGgGR7/DISUTtb9qaAdLAmgIR0Ci75VPN3W4dX2UKGgGR7/VQFcIJJGwaAdLA2gIR0Ci7+/mDDjzdX2UKGgGR7+XLeQ+2VmjaAdLAWgIR0Ci75l6Rhc8dX2UKGgGR7/XQnhKlHjIaAdLBWgIR0Ci71Xt8eCDdX2UKGgGR7/SLpRoAXEZaAdLA2gIR0Ci7/vVNHpbdX2UKGgGR7/HcnE2pAD8aAdLA2gIR0Ci76XA/LTydX2UKGgGR7+5oK2KEWZaaAdLAmgIR0Ci762xQizLdX2UKGgGR7/R3IdU83dcaAdLA2gIR0Ci72Jw84gidX2UKGgGR7/iustCiRGMaAdLCGgIR0Ci8GGXgLqmdX2UKGgGR7/Ql6Z6Uqx1aAdLA2gIR0Ci8AiCaqjrdX2UKGgGR7+VYISlFc6eaAdLAWgIR0Ci77In0CiidX2UKGgGR7/SOLzf779AaAdLA2gIR0Ci727m+0w8dX2UKGgGR7/HxuKoAGSqaAdLA2gIR0Ci8G5c1O0tdX2UKGgGR7/ImVqveP7vaAdLA2gIR0Ci8BVR+BpYdX2UKGgGR7/FKFqSHM2WaAdLA2gIR0Ci778JD3M7dX2UKGgGR7/Ag+QlruYyaAdLAmgIR0Ci8HbYTTOPdX2UKGgGR7/QVObiIcioaAdLA2gIR0Ci73vXTVlPdX2UKGgGR7/SCgK4QSSNaAdLA2gIR0Ci8CGXokiVdX2UKGgGR7/SsguAZsKtaAdLA2gIR0Ci78tAC4jKdX2UKGgGR7+4bGWD6FdtaAdLAmgIR0Ci74OXmeUZdX2UKGgGR7/PVR1oxpL3aAdLA2gIR0Ci8IK7ZnL8dX2UKGgGR7/AYP5HmRvFaAdLAmgIR0Ci79MiSq2jdX2UKGgGR7+7Y150KZ2IaAdLAmgIR0Ci8Irgn+hodX2UKGgGR7/QtNi6QNkOaAdLBGgIR0Ci8DG7SRbKdX2UKGgGR7/Wo0ygwoLHaAdLBGgIR0Ci75QJokAxdX2UKGgGR7+3B3zMA3kxaAdLAmgIR0Ci8Dmvnr6ddX2UKGgGR7/XOHFglWwNaAdLBGgIR0Ci7+NEG7jDdX2UKGgGR7/JqIrOJLuhaAdLA2gIR0Ci8JcTzunddX2UKGgGR7+0UN8VpKzzaAdLAmgIR0Ci7+uGsV+JdX2UKGgGR7/TuhsZYPoWaAdLA2gIR0Ci76BfShJzdX2UKGgGR7/JwNLDhtLtaAdLA2gIR0Ci8EYoiLVGdX2UKGgGR7/MeT3Zf2K3aAdLA2gIR0Ci8KNVrAP/dX2UKGgGR7/CorFwT/Q0aAdLAmgIR0Ci76hIFvAHdX2UKGgGR7/G51/2Cdz5aAdLA2gIR0Ci8FIN/e+FdX2UKGgGR7/cA2ycCo0iaAdLBGgIR0Ci7/u4gA6udX2UKGgGR7/NihFmWdEtaAdLA2gIR0Ci8K+qaPS2dX2UKGgGR7/Otuk1uR9xaAdLA2gIR0Ci77SrxRVIdX2UKGgGR7+ob83uNPxhaAdLAWgIR0Ci77iF0xM4dX2UKGgGR7/Srfcer+5waAdLA2gIR0Ci8F5tFa0QdX2UKGgGR7/HVn27FsHjaAdLA2gIR0Ci8AgCwKSgdX2UKGgGR7/aGIbfgrH3aAdLBGgIR0Ci8L82BJ7LdX2UKGgGR7/A8GLUCq6waAdLAmgIR0Ci8A912aDxdX2UKGgGR7/V0/nnuAqeaAdLA2gIR0Ci8Gnf2saLdX2UKGgGR7/aG9pRGc4HaAdLBGgIR0Ci78gBLf1pdX2UKGgGR7/A1jRUm2LHaAdLAmgIR0Ci8BcaXKKYdX2UKGgGR7/RLUkOZssQaAdLA2gIR0Ci8Mradtl7dX2UKGgGR7+1xR2r4nF6aAdLAmgIR0Ci8HGlANXpdX2UKGgGR7+2lBQemvW6aAdLAmgIR0Ci78/hMrVfdX2UKGgGR7+5Nvfj0cwQaAdLAmgIR0Ci8B8L0BfbdX2UKGgGR7/WBhhH9WIXaAdLA2gIR0Ci8NYsd1dPdX2UKGgGR7/Oza9K28ZlaAdLA2gIR0Ci79suez2OdX2UKGgGR7/WKwpvxYq5aAdLBGgIR0Ci8IDurp7kdX2UKGgGR7/SX9R77bcoaAdLA2gIR0Ci8Cq+BYmtdX2UKGgGR7+0xN7BwdbQaAdLAmgIR0Ci8N6QvHtGdX2UKGgGR7/NJMg2ZRbbaAdLA2gIR0Ci7+cT8HfNdX2UKGgGR7/I5XEIgNgCaAdLA2gIR0Ci8I0x20RfdX2UKGgGR7/MRHPNVzZIaAdLA2gIR0Ci8OqCpWFOdX2UKGgGR7+fAbhm5DqoaAdLAWgIR0Ci8JFjEvTPdX2UKGgGR7/EEs8PnSv1aAdLAmgIR0Ci7++3x4IKdX2UKGgGR7/Y7O3UhFEzaAdLBWgIR0Ci8D8FY+0PdX2UKGgGR7/JqGlANXo1aAdLA2gIR0Ci8Pa4tpVTdX2UKGgGR7/N+KjzqbBoaAdLA2gIR0Ci8J2dmQKbdX2UKGgGR7/Q4mTkhib2aAdLA2gIR0Ci7/wSamXPdX2UKGgGR7+oUBXCCSRsaAdLAWgIR0Ci8PtxMnJDdX2UKGgGR7+k5n13+uNhaAdLAWgIR0Ci8KJcPe54dX2UKGgGR7/McNH6MzdlaAdLA2gIR0Ci8Ewl0HQhdX2UKGgGR7+3jkuHvc8DaAdLAmgIR0Ci8Kq9oN/fdX2UKGgGR7/TKXfIjnmraAdLA2gIR0Ci8AkoWpIddX2UKGgGR7/QEofCAMDwaAdLA2gIR0Ci8QhxxT86dX2UKGgGR7/QdRR/EwWWaAdLA2gIR0Ci8FiY9gWrdX2UKGgGR7+fQ4S6DoQnaAdLAWgIR0Ci8FyJKraNdX2UKGgGR7/L1HOKO1fFaAdLA2gIR0Ci8LdKujh2dX2UKGgGR7/MxxkupS75aAdLA2gIR0Ci8BWuxKQJdX2UKGgGR7/TUSZjQRf4aAdLA2gIR0Ci8RTe40/GdX2UKGgGR7/CCWeHzpX7aAdLAmgIR0Ci8B3rD63zdX2UKGgGR7/HZpztCzC2aAdLA2gIR0Ci8MPepGWldX2UKGgGR7/W/M4cWCVbaAdLBGgIR0Ci8G2Rq46PdX2UKGgGR7/MBdUsFt9AaAdLA2gIR0Ci8SFl9SdfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 1000, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (678 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2537303328514099, "std_reward": 0.08685315266709466, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-19T08:31:27.260552"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:726f46b7ab146e0dd9071f62116b74937c86003a2d8bd90ed41bcda50b126b02
3
+ size 2623