MikkoLipsanen
commited on
Commit
•
1838a16
1
Parent(s):
8c07e0b
Upload 3 files
Browse files- augments.py +42 -0
- dataset.py +44 -0
- train_trocr.py +142 -0
augments.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import random
|
3 |
+
import torchvision.transforms as T
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class RandAug:
|
7 |
+
"""Randomly chosen image augmentations."""
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
# Augmentation options
|
11 |
+
self.trans = ['rotation', 'blur', 'color', 'sharpness']
|
12 |
+
|
13 |
+
def __call__(self, img):
|
14 |
+
# Randomly choose the number of augmentations used for input image
|
15 |
+
n_transforms = random.randint(1, len(self.trans))
|
16 |
+
# Randomly choose the augmentation types
|
17 |
+
transforms = random.sample(self.trans, n_transforms)
|
18 |
+
|
19 |
+
# Implement the augmentations sequentially
|
20 |
+
if 'rotation' in transforms:
|
21 |
+
rotation = random.randint(-10, 10)
|
22 |
+
img = T.functional.rotate(img=img, angle=rotation, expand=True, fill=255)
|
23 |
+
|
24 |
+
if 'blur' in transforms:
|
25 |
+
kernel = random.choice([1,3,5])
|
26 |
+
transform = T.GaussianBlur(kernel, sigma=(0.1, 2.0))
|
27 |
+
img = transform(img)
|
28 |
+
|
29 |
+
if 'color' in transforms:
|
30 |
+
rand_brightness = random.uniform(0, 0.3)
|
31 |
+
rand_hue = random.uniform(0, 0.5)
|
32 |
+
rand_contrast = random.uniform(0, 0.5)
|
33 |
+
rand_saturation = random.uniform(0, 0.5)
|
34 |
+
transform = T.ColorJitter(brightness=rand_brightness, contrast=rand_contrast, saturation=rand_saturation, hue=rand_hue)
|
35 |
+
img = transform(img)
|
36 |
+
|
37 |
+
if 'sharpness' in transforms:
|
38 |
+
sharpness = 1+(np.random.exponential()/2)
|
39 |
+
trans = T.RandomAdjustSharpness(sharpness, p=1)
|
40 |
+
img = transform(img)
|
41 |
+
|
42 |
+
return img
|
dataset.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
|
7 |
+
from augments import RandAug
|
8 |
+
|
9 |
+
# Torch dataset
|
10 |
+
class TextlineDataset(Dataset):
|
11 |
+
def __init__(self, root_dir, df, processor, augment=False, max_target_length=128):
|
12 |
+
self.root_dir = root_dir
|
13 |
+
self.df = df
|
14 |
+
self.processor = processor
|
15 |
+
self.augment = augment
|
16 |
+
self.augmentator = RandAug()
|
17 |
+
self.max_target_length = max_target_length
|
18 |
+
|
19 |
+
def __len__(self):
|
20 |
+
return len(self.df)
|
21 |
+
|
22 |
+
def __getitem__(self, idx):
|
23 |
+
# get file name + text
|
24 |
+
file_name = self.df['file_name'][idx]
|
25 |
+
text = self.df['text'][idx]
|
26 |
+
|
27 |
+
# prepare image (i.e. resize + normalize)
|
28 |
+
image = Image.open(self.root_dir + file_name).convert("RGB")
|
29 |
+
|
30 |
+
# Add image augmentations
|
31 |
+
if self.augment:
|
32 |
+
image = self.augmentator(image)
|
33 |
+
|
34 |
+
# extract the pixel values
|
35 |
+
pixel_values = self.processor(image, return_tensors="pt").pixel_values
|
36 |
+
|
37 |
+
# add labels (input_ids) by encoding the text
|
38 |
+
labels = self.processor.tokenizer(str(text),
|
39 |
+
padding="max_length", truncation=True,
|
40 |
+
max_length=self.max_target_length).input_ids
|
41 |
+
# important: make sure that PAD tokens are ignored by the loss function
|
42 |
+
labels = [label if label != self.processor.tokenizer.pad_token_id else -100 for label in labels]
|
43 |
+
encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}
|
44 |
+
return encoding
|
train_trocr.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import argparse
|
5 |
+
from evaluate import load
|
6 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, AdamW
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
#import torch_optimizer as optim
|
9 |
+
|
10 |
+
from dataset import TextlineDataset
|
11 |
+
|
12 |
+
parser = argparse.ArgumentParser('arguments for the code')
|
13 |
+
|
14 |
+
parser.add_argument('--root_path', type=str, default="",
|
15 |
+
help='Root path to data files.')
|
16 |
+
parser.add_argument('--tr_data_path', type=str, default="/data/htr/trocr_data/trocr_tuomiokirjat/train/trocr/data.csv",
|
17 |
+
help='Path to .csv file containing the training data.')
|
18 |
+
parser.add_argument('--val_data_path', type=str, default="/data/htr/trocr_data/trocr_tuomiokirjat/val/trocr/data.csv",
|
19 |
+
help='Path to .csv file containing the validation data.')
|
20 |
+
parser.add_argument('--output_path', type=str, default="/koodit/htr/text_recognition/trocr/tuomiokirjat/models/22112023/",
|
21 |
+
help='Path for saving training results.')
|
22 |
+
parser.add_argument('--resume_path', type=str, default="/koodit/htr/text_recognition/trocr/tuomiokirjat/models/22112023",
|
23 |
+
help='Path to the previous model')
|
24 |
+
parser.add_argument('--batch_size', type=int, default=24,
|
25 |
+
help='Batch size per device.')
|
26 |
+
parser.add_argument('--epochs', type=int, default=13,
|
27 |
+
help='Number of training epochs.')
|
28 |
+
|
29 |
+
args = parser.parse_args()
|
30 |
+
|
31 |
+
# nohup python train_trocr.py > logs/tuomiokirjat_resume_23112023.txt 2>&1 &
|
32 |
+
# echo $! > logs/save_pid.txt
|
33 |
+
|
34 |
+
# run using 2 GPUs: torchrun --nproc_per_node=2 train_trocr.py > logs/tuomiokirjat_22112023.txt 2>&1 &
|
35 |
+
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
print('Device: ', device)
|
38 |
+
|
39 |
+
# Initialize processor and model
|
40 |
+
#processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
41 |
+
#model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
42 |
+
processor =TrOCRProcessor.from_pretrained(args.resume_path + "/processor")
|
43 |
+
model = VisionEncoderDecoderModel.from_pretrained(args.resume_path + "/checkpoint-13094")
|
44 |
+
|
45 |
+
model.to(device)
|
46 |
+
|
47 |
+
# Initialize metrics
|
48 |
+
cer_metric = load("cer")
|
49 |
+
wer_metric = load("wer")
|
50 |
+
|
51 |
+
# Load train and validation data to dataframes
|
52 |
+
train_df = pd.read_csv(args.tr_data_path)
|
53 |
+
val_df = pd.read_csv(args.val_data_path)
|
54 |
+
#train_df = train_df.iloc[:50]
|
55 |
+
#val_df = val_df.iloc[:10]
|
56 |
+
|
57 |
+
# Reset the indices to start from zero
|
58 |
+
train_df.reset_index(drop=True, inplace=True)
|
59 |
+
val_df.reset_index(drop=True, inplace=True)
|
60 |
+
|
61 |
+
# Create train and validation datasets
|
62 |
+
train_dataset = TextlineDataset(root_dir=args.root_path,
|
63 |
+
df=train_df,
|
64 |
+
processor=processor,
|
65 |
+
augment=False)
|
66 |
+
|
67 |
+
eval_dataset = TextlineDataset(root_dir=args.root_path,
|
68 |
+
df=val_df,
|
69 |
+
processor=processor,
|
70 |
+
augment=False)
|
71 |
+
|
72 |
+
print("Number of training examples:", len(train_dataset))
|
73 |
+
print("Number of validation examples:", len(eval_dataset))
|
74 |
+
|
75 |
+
# Define model configuration
|
76 |
+
|
77 |
+
# set special tokens used for creating the decoder_input_ids from the labels
|
78 |
+
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
|
79 |
+
model.config.pad_token_id = processor.tokenizer.pad_token_id
|
80 |
+
# make sure vocab size is set correctly
|
81 |
+
model.config.vocab_size = model.config.decoder.vocab_size
|
82 |
+
# set beam search parameters
|
83 |
+
model.config.eos_token_id = processor.tokenizer.sep_token_id
|
84 |
+
model.config.max_length = 64
|
85 |
+
model.config.early_stopping = True
|
86 |
+
model.config.no_repeat_ngram_size = 3
|
87 |
+
model.config.length_penalty = 2.0
|
88 |
+
model.config.num_beams = 4
|
89 |
+
|
90 |
+
# Set arguments for model training
|
91 |
+
# For all argumenst see https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments
|
92 |
+
training_args = Seq2SeqTrainingArguments(
|
93 |
+
predict_with_generate=True,
|
94 |
+
evaluation_strategy="epoch",
|
95 |
+
save_strategy="epoch",
|
96 |
+
logging_strategy="steps",
|
97 |
+
logging_steps=50,
|
98 |
+
per_device_train_batch_size=args.batch_size,
|
99 |
+
per_device_eval_batch_size=args.batch_size,
|
100 |
+
load_best_model_at_end=True,
|
101 |
+
metric_for_best_model='cer',
|
102 |
+
greater_is_better=False,
|
103 |
+
#fp16=True,
|
104 |
+
num_train_epochs=args.epochs,
|
105 |
+
save_total_limit=2,
|
106 |
+
output_dir=args.output_path,
|
107 |
+
optim="adamw_torch"
|
108 |
+
)
|
109 |
+
|
110 |
+
# Function for computing CER and WER metrics for the prediction results
|
111 |
+
def compute_metrics(pred):
|
112 |
+
labels_ids = pred.label_ids
|
113 |
+
pred_ids = pred.predictions
|
114 |
+
|
115 |
+
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
116 |
+
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
|
117 |
+
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
|
118 |
+
|
119 |
+
cer = cer_metric.compute(predictions=pred_str, references=label_str)
|
120 |
+
wer = wer_metric.compute(predictions=pred_str, references=label_str)
|
121 |
+
|
122 |
+
return {"cer": cer, "wer": wer}
|
123 |
+
|
124 |
+
|
125 |
+
# instantiate trainer
|
126 |
+
# For all parameters see: https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainer
|
127 |
+
trainer = Seq2SeqTrainer(
|
128 |
+
model=model,
|
129 |
+
tokenizer=processor.feature_extractor,
|
130 |
+
args=training_args,
|
131 |
+
compute_metrics=compute_metrics,
|
132 |
+
train_dataset=train_dataset,
|
133 |
+
eval_dataset=eval_dataset,
|
134 |
+
data_collator=default_data_collator,
|
135 |
+
)
|
136 |
+
|
137 |
+
# Train the model
|
138 |
+
trainer.train()
|
139 |
+
#trainer.train(resume_from_checkpoint = True)
|
140 |
+
model.save_pretrained(args.output_path)
|
141 |
+
processor.save_pretrained(args.output_path + "/processor")
|
142 |
+
|