merge eva_clip to vision_tower_builder
Browse files- eva_clip/model_configs/EVA02-CLIP-L-14-448.json → EVA02-CLIP-L-14-448.json +0 -0
- eva_clip/__init__.py +0 -11
- eva_clip/__pycache__/__init__.cpython-39.pyc +0 -0
- eva_clip/__pycache__/constants.cpython-39.pyc +0 -0
- eva_clip/__pycache__/eva_vit_model.cpython-39.pyc +0 -0
- eva_clip/__pycache__/factory.cpython-39.pyc +0 -0
- eva_clip/__pycache__/hf_configs.cpython-39.pyc +0 -0
- eva_clip/__pycache__/hf_model.cpython-39.pyc +0 -0
- eva_clip/__pycache__/loss.cpython-39.pyc +0 -0
- eva_clip/__pycache__/model.cpython-39.pyc +0 -0
- eva_clip/__pycache__/modified_resnet.cpython-39.pyc +0 -0
- eva_clip/__pycache__/openai.cpython-39.pyc +0 -0
- eva_clip/__pycache__/pretrained.cpython-39.pyc +0 -0
- eva_clip/__pycache__/rope.cpython-39.pyc +0 -0
- eva_clip/__pycache__/timm_model.cpython-39.pyc +0 -0
- eva_clip/__pycache__/tokenizer.cpython-39.pyc +0 -0
- eva_clip/__pycache__/transform.cpython-39.pyc +0 -0
- eva_clip/__pycache__/transformer.cpython-39.pyc +0 -0
- eva_clip/__pycache__/utils.cpython-39.pyc +0 -0
- eva_clip/bpe_simple_vocab_16e6.txt.gz +0 -3
- eva_clip/constants.py +0 -2
- eva_clip/factory.py +0 -459
- eva_clip/hf_configs.py +0 -57
- eva_clip/hf_model.py +0 -248
- eva_clip/loss.py +0 -138
- eva_clip/model.py +0 -439
- eva_clip/model_configs/EVA01-CLIP-B-16.json +0 -19
- eva_clip/model_configs/EVA01-CLIP-g-14-plus.json +0 -24
- eva_clip/model_configs/EVA01-CLIP-g-14.json +0 -24
- eva_clip/model_configs/EVA02-CLIP-B-16.json +0 -29
- eva_clip/model_configs/EVA02-CLIP-L-14-336.json +0 -29
- eva_clip/model_configs/EVA02-CLIP-L-14.json +0 -29
- eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json +0 -25
- eva_clip/model_configs/EVA02-CLIP-bigE-14.json +0 -25
- eva_clip/modified_resnet.py +0 -181
- eva_clip/openai.py +0 -144
- eva_clip/pretrained.py +0 -332
- eva_clip/rope.py +0 -137
- eva_clip/timm_model.py +0 -122
- eva_clip/tokenizer.py +0 -201
- eva_clip/transform.py +0 -103
- eva_clip/transformer.py +0 -737
- eva_clip/utils.py +0 -326
- modeling_kangaroo.py +10 -61
- eva_clip/eva_vit_model.py → vision_tower_builder.py +242 -6
eva_clip/model_configs/EVA02-CLIP-L-14-448.json → EVA02-CLIP-L-14-448.json
RENAMED
File without changes
|
eva_clip/__init__.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
2 |
-
from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer
|
3 |
-
from .factory import list_models, add_model_config, get_model_config, load_checkpoint
|
4 |
-
from .loss import ClipLoss
|
5 |
-
from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\
|
6 |
-
convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
|
7 |
-
from .openai import load_openai_model, list_openai_models
|
8 |
-
from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\
|
9 |
-
get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
|
10 |
-
from .tokenizer import SimpleTokenizer, tokenize
|
11 |
-
from .transform import image_transform
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/__pycache__/__init__.cpython-39.pyc
DELETED
Binary file (1.28 kB)
|
|
eva_clip/__pycache__/constants.cpython-39.pyc
DELETED
Binary file (313 Bytes)
|
|
eva_clip/__pycache__/eva_vit_model.cpython-39.pyc
DELETED
Binary file (15.8 kB)
|
|
eva_clip/__pycache__/factory.cpython-39.pyc
DELETED
Binary file (11.2 kB)
|
|
eva_clip/__pycache__/hf_configs.cpython-39.pyc
DELETED
Binary file (714 Bytes)
|
|
eva_clip/__pycache__/hf_model.cpython-39.pyc
DELETED
Binary file (7.38 kB)
|
|
eva_clip/__pycache__/loss.cpython-39.pyc
DELETED
Binary file (3.32 kB)
|
|
eva_clip/__pycache__/model.cpython-39.pyc
DELETED
Binary file (13.2 kB)
|
|
eva_clip/__pycache__/modified_resnet.cpython-39.pyc
DELETED
Binary file (6.33 kB)
|
|
eva_clip/__pycache__/openai.cpython-39.pyc
DELETED
Binary file (4.79 kB)
|
|
eva_clip/__pycache__/pretrained.cpython-39.pyc
DELETED
Binary file (9.01 kB)
|
|
eva_clip/__pycache__/rope.cpython-39.pyc
DELETED
Binary file (5.25 kB)
|
|
eva_clip/__pycache__/timm_model.cpython-39.pyc
DELETED
Binary file (3.94 kB)
|
|
eva_clip/__pycache__/tokenizer.cpython-39.pyc
DELETED
Binary file (8.42 kB)
|
|
eva_clip/__pycache__/transform.cpython-39.pyc
DELETED
Binary file (2.78 kB)
|
|
eva_clip/__pycache__/transformer.cpython-39.pyc
DELETED
Binary file (20.7 kB)
|
|
eva_clip/__pycache__/utils.cpython-39.pyc
DELETED
Binary file (9.61 kB)
|
|
eva_clip/bpe_simple_vocab_16e6.txt.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
-
size 1356917
|
|
|
|
|
|
|
|
eva_clip/constants.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
2 |
-
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
|
|
|
|
|
eva_clip/factory.py
DELETED
@@ -1,459 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import logging
|
3 |
-
import os
|
4 |
-
import pathlib
|
5 |
-
import re
|
6 |
-
from copy import deepcopy
|
7 |
-
from pathlib import Path
|
8 |
-
from typing import Optional, Tuple, Union, Dict, Any
|
9 |
-
import torch
|
10 |
-
|
11 |
-
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
12 |
-
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
13 |
-
get_cast_dtype
|
14 |
-
from .openai import load_openai_model
|
15 |
-
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
|
16 |
-
from .transform import image_transform
|
17 |
-
from .tokenizer import HFTokenizer, tokenize
|
18 |
-
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
|
19 |
-
|
20 |
-
|
21 |
-
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
22 |
-
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
23 |
-
|
24 |
-
|
25 |
-
def _natural_key(string_):
|
26 |
-
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
27 |
-
|
28 |
-
|
29 |
-
def _rescan_model_configs():
|
30 |
-
global _MODEL_CONFIGS
|
31 |
-
|
32 |
-
config_ext = ('.json',)
|
33 |
-
config_files = []
|
34 |
-
for config_path in _MODEL_CONFIG_PATHS:
|
35 |
-
if config_path.is_file() and config_path.suffix in config_ext:
|
36 |
-
config_files.append(config_path)
|
37 |
-
elif config_path.is_dir():
|
38 |
-
for ext in config_ext:
|
39 |
-
config_files.extend(config_path.glob(f'*{ext}'))
|
40 |
-
|
41 |
-
for cf in config_files:
|
42 |
-
with open(cf, "r", encoding="utf8") as f:
|
43 |
-
model_cfg = json.load(f)
|
44 |
-
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
45 |
-
_MODEL_CONFIGS[cf.stem] = model_cfg
|
46 |
-
|
47 |
-
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
|
48 |
-
|
49 |
-
|
50 |
-
_rescan_model_configs() # initial populate of model config registry
|
51 |
-
|
52 |
-
|
53 |
-
def list_models():
|
54 |
-
""" enumerate available model architectures based on config files """
|
55 |
-
return list(_MODEL_CONFIGS.keys())
|
56 |
-
|
57 |
-
|
58 |
-
def add_model_config(path):
|
59 |
-
""" add model config path or file and update registry """
|
60 |
-
if not isinstance(path, Path):
|
61 |
-
path = Path(path)
|
62 |
-
_MODEL_CONFIG_PATHS.append(path)
|
63 |
-
_rescan_model_configs()
|
64 |
-
|
65 |
-
|
66 |
-
def get_model_config(model_name):
|
67 |
-
if model_name in _MODEL_CONFIGS:
|
68 |
-
return deepcopy(_MODEL_CONFIGS[model_name])
|
69 |
-
else:
|
70 |
-
return None
|
71 |
-
|
72 |
-
|
73 |
-
def get_tokenizer(model_name):
|
74 |
-
config = get_model_config(model_name)
|
75 |
-
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
|
76 |
-
return tokenizer
|
77 |
-
|
78 |
-
|
79 |
-
# loading openai CLIP weights when is_openai=True for training
|
80 |
-
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
|
81 |
-
if is_openai:
|
82 |
-
model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
|
83 |
-
state_dict = model.state_dict()
|
84 |
-
for key in ["input_resolution", "context_length", "vocab_size"]:
|
85 |
-
state_dict.pop(key, None)
|
86 |
-
else:
|
87 |
-
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
88 |
-
for mk in model_key.split('|'):
|
89 |
-
if isinstance(checkpoint, dict) and mk in checkpoint:
|
90 |
-
state_dict = checkpoint[mk]
|
91 |
-
break
|
92 |
-
else:
|
93 |
-
state_dict = checkpoint
|
94 |
-
if next(iter(state_dict.items()))[0].startswith('module'):
|
95 |
-
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
96 |
-
|
97 |
-
for k in skip_list:
|
98 |
-
if k in list(state_dict.keys()):
|
99 |
-
logging.info(f"Removing key {k} from pretrained checkpoint")
|
100 |
-
del state_dict[k]
|
101 |
-
|
102 |
-
if os.getenv('RoPE') == '1':
|
103 |
-
for k in list(state_dict.keys()):
|
104 |
-
if 'freqs_cos' in k or 'freqs_sin' in k:
|
105 |
-
del state_dict[k]
|
106 |
-
return state_dict
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
|
111 |
-
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
|
112 |
-
# detect old format and make compatible with new format
|
113 |
-
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
114 |
-
state_dict = convert_to_custom_text_state_dict(state_dict)
|
115 |
-
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
|
116 |
-
state_dict['logit_scale'] = state_dict['text.logit_scale']
|
117 |
-
del state_dict['text.logit_scale']
|
118 |
-
|
119 |
-
# resize_clip_pos_embed for CLIP and open CLIP
|
120 |
-
if 'visual.positional_embedding' in state_dict:
|
121 |
-
resize_clip_pos_embed(state_dict, model)
|
122 |
-
# specified to eva_vit_model
|
123 |
-
elif 'visual.pos_embed' in state_dict:
|
124 |
-
resize_evaclip_pos_embed(state_dict, model)
|
125 |
-
|
126 |
-
# resize_clip_pos_embed(state_dict, model)
|
127 |
-
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
128 |
-
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
|
129 |
-
return incompatible_keys
|
130 |
-
|
131 |
-
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
132 |
-
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
133 |
-
|
134 |
-
for k in list(state_dict.keys()):
|
135 |
-
if not k.startswith('visual.'):
|
136 |
-
del state_dict[k]
|
137 |
-
for k in list(state_dict.keys()):
|
138 |
-
if k.startswith('visual.'):
|
139 |
-
new_k = k[7:]
|
140 |
-
state_dict[new_k] = state_dict[k]
|
141 |
-
del state_dict[k]
|
142 |
-
return state_dict
|
143 |
-
|
144 |
-
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
145 |
-
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
146 |
-
|
147 |
-
for k in list(state_dict.keys()):
|
148 |
-
if k.startswith('visual.'):
|
149 |
-
del state_dict[k]
|
150 |
-
return state_dict
|
151 |
-
|
152 |
-
def get_pretrained_tag(pretrained_model):
|
153 |
-
pretrained_model = pretrained_model.lower()
|
154 |
-
if "laion" in pretrained_model or "open_clip" in pretrained_model:
|
155 |
-
return "open_clip"
|
156 |
-
elif "openai" in pretrained_model:
|
157 |
-
return "clip"
|
158 |
-
elif "eva" in pretrained_model and "clip" in pretrained_model:
|
159 |
-
return "eva_clip"
|
160 |
-
else:
|
161 |
-
return "other"
|
162 |
-
|
163 |
-
def load_pretrained_checkpoint(
|
164 |
-
model,
|
165 |
-
visual_checkpoint_path,
|
166 |
-
text_checkpoint_path,
|
167 |
-
strict=True,
|
168 |
-
visual_model=None,
|
169 |
-
text_model=None,
|
170 |
-
model_key="model|module|state_dict",
|
171 |
-
skip_list=[]):
|
172 |
-
visual_tag = get_pretrained_tag(visual_model)
|
173 |
-
text_tag = get_pretrained_tag(text_model)
|
174 |
-
|
175 |
-
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
|
176 |
-
visual_incompatible_keys, text_incompatible_keys = None, None
|
177 |
-
if visual_checkpoint_path:
|
178 |
-
if visual_tag == "eva_clip" or visual_tag == "open_clip":
|
179 |
-
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
|
180 |
-
elif visual_tag == "clip":
|
181 |
-
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
|
182 |
-
else:
|
183 |
-
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
184 |
-
|
185 |
-
# resize_clip_pos_embed for CLIP and open CLIP
|
186 |
-
if 'positional_embedding' in visual_state_dict:
|
187 |
-
resize_visual_pos_embed(visual_state_dict, model)
|
188 |
-
# specified to EVA model
|
189 |
-
elif 'pos_embed' in visual_state_dict:
|
190 |
-
resize_eva_pos_embed(visual_state_dict, model)
|
191 |
-
|
192 |
-
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
|
193 |
-
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
|
194 |
-
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
|
195 |
-
|
196 |
-
if text_checkpoint_path:
|
197 |
-
if text_tag == "eva_clip" or text_tag == "open_clip":
|
198 |
-
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
|
199 |
-
elif text_tag == "clip":
|
200 |
-
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
|
201 |
-
else:
|
202 |
-
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
203 |
-
|
204 |
-
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
|
205 |
-
|
206 |
-
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
|
207 |
-
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
|
208 |
-
|
209 |
-
return visual_incompatible_keys, text_incompatible_keys
|
210 |
-
|
211 |
-
def create_model(
|
212 |
-
model_name: str,
|
213 |
-
pretrained: Optional[str] = None,
|
214 |
-
precision: str = 'fp32',
|
215 |
-
device: Union[str, torch.device] = 'cpu',
|
216 |
-
jit: bool = False,
|
217 |
-
force_quick_gelu: bool = False,
|
218 |
-
force_custom_clip: bool = False,
|
219 |
-
force_patch_dropout: Optional[float] = None,
|
220 |
-
pretrained_image: str = '',
|
221 |
-
pretrained_text: str = '',
|
222 |
-
pretrained_hf: bool = True,
|
223 |
-
pretrained_visual_model: str = None,
|
224 |
-
pretrained_text_model: str = None,
|
225 |
-
cache_dir: Optional[str] = None,
|
226 |
-
skip_list: list = [],
|
227 |
-
):
|
228 |
-
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
229 |
-
if isinstance(device, str):
|
230 |
-
device = torch.device(device)
|
231 |
-
|
232 |
-
if pretrained and pretrained.lower() == 'openai':
|
233 |
-
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
234 |
-
model = load_openai_model(
|
235 |
-
model_name,
|
236 |
-
precision=precision,
|
237 |
-
device=device,
|
238 |
-
jit=jit,
|
239 |
-
cache_dir=cache_dir,
|
240 |
-
)
|
241 |
-
else:
|
242 |
-
model_cfg = get_model_config(model_name)
|
243 |
-
if model_cfg is not None:
|
244 |
-
logging.info(f'Loaded {model_name} model config.')
|
245 |
-
else:
|
246 |
-
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
247 |
-
raise RuntimeError(f'Model config for {model_name} not found.')
|
248 |
-
|
249 |
-
if 'rope' in model_cfg.get('vision_cfg', {}):
|
250 |
-
if model_cfg['vision_cfg']['rope']:
|
251 |
-
os.environ['RoPE'] = "1"
|
252 |
-
else:
|
253 |
-
os.environ['RoPE'] = "0"
|
254 |
-
|
255 |
-
if force_quick_gelu:
|
256 |
-
# override for use of QuickGELU on non-OpenAI transformer models
|
257 |
-
model_cfg["quick_gelu"] = True
|
258 |
-
|
259 |
-
if force_patch_dropout is not None:
|
260 |
-
# override the default patch dropout value
|
261 |
-
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
|
262 |
-
|
263 |
-
cast_dtype = get_cast_dtype(precision)
|
264 |
-
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
|
265 |
-
|
266 |
-
if custom_clip:
|
267 |
-
if 'hf_model_name' in model_cfg.get('text_cfg', {}):
|
268 |
-
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
|
269 |
-
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
|
270 |
-
else:
|
271 |
-
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
272 |
-
|
273 |
-
pretrained_cfg = {}
|
274 |
-
if pretrained:
|
275 |
-
checkpoint_path = ''
|
276 |
-
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
277 |
-
if pretrained_cfg:
|
278 |
-
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
279 |
-
elif os.path.exists(pretrained):
|
280 |
-
checkpoint_path = pretrained
|
281 |
-
|
282 |
-
if checkpoint_path:
|
283 |
-
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
284 |
-
load_checkpoint(model,
|
285 |
-
checkpoint_path,
|
286 |
-
model_key="model|module|state_dict",
|
287 |
-
strict=False
|
288 |
-
)
|
289 |
-
else:
|
290 |
-
error_str = (
|
291 |
-
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
292 |
-
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
293 |
-
logging.warning(error_str)
|
294 |
-
raise RuntimeError(error_str)
|
295 |
-
else:
|
296 |
-
visual_checkpoint_path = ''
|
297 |
-
text_checkpoint_path = ''
|
298 |
-
|
299 |
-
if pretrained_image:
|
300 |
-
pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
|
301 |
-
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
|
302 |
-
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
|
303 |
-
# pretrained weight loading for timm models set via vision_cfg
|
304 |
-
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
305 |
-
elif pretrained_image_cfg:
|
306 |
-
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
|
307 |
-
elif os.path.exists(pretrained_image):
|
308 |
-
visual_checkpoint_path = pretrained_image
|
309 |
-
else:
|
310 |
-
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
311 |
-
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
312 |
-
|
313 |
-
if pretrained_text:
|
314 |
-
pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
|
315 |
-
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
|
316 |
-
if pretrained_image_cfg:
|
317 |
-
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
|
318 |
-
elif os.path.exists(pretrained_text):
|
319 |
-
text_checkpoint_path = pretrained_text
|
320 |
-
else:
|
321 |
-
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
322 |
-
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
323 |
-
|
324 |
-
if visual_checkpoint_path:
|
325 |
-
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
|
326 |
-
if text_checkpoint_path:
|
327 |
-
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
|
328 |
-
|
329 |
-
if visual_checkpoint_path or text_checkpoint_path:
|
330 |
-
load_pretrained_checkpoint(
|
331 |
-
model,
|
332 |
-
visual_checkpoint_path,
|
333 |
-
text_checkpoint_path,
|
334 |
-
strict=False,
|
335 |
-
visual_model=pretrained_visual_model,
|
336 |
-
text_model=pretrained_text_model,
|
337 |
-
model_key="model|module|state_dict",
|
338 |
-
skip_list=skip_list
|
339 |
-
)
|
340 |
-
|
341 |
-
if "fp16" in precision or "bf16" in precision:
|
342 |
-
logging.info(f'convert precision to {precision}')
|
343 |
-
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
|
344 |
-
|
345 |
-
model.to(device=device)
|
346 |
-
|
347 |
-
# set image / mean metadata from pretrained_cfg if available, or use default
|
348 |
-
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
|
349 |
-
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
|
350 |
-
|
351 |
-
if jit:
|
352 |
-
model = torch.jit.script(model)
|
353 |
-
|
354 |
-
return model
|
355 |
-
|
356 |
-
|
357 |
-
def create_model_and_transforms(
|
358 |
-
model_name: str,
|
359 |
-
pretrained: Optional[str] = None,
|
360 |
-
precision: str = 'fp32',
|
361 |
-
device: Union[str, torch.device] = 'cpu',
|
362 |
-
jit: bool = False,
|
363 |
-
force_quick_gelu: bool = False,
|
364 |
-
force_custom_clip: bool = False,
|
365 |
-
force_patch_dropout: Optional[float] = None,
|
366 |
-
pretrained_image: str = '',
|
367 |
-
pretrained_text: str = '',
|
368 |
-
pretrained_hf: bool = True,
|
369 |
-
pretrained_visual_model: str = None,
|
370 |
-
pretrained_text_model: str = None,
|
371 |
-
image_mean: Optional[Tuple[float, ...]] = None,
|
372 |
-
image_std: Optional[Tuple[float, ...]] = None,
|
373 |
-
cache_dir: Optional[str] = None,
|
374 |
-
skip_list: list = [],
|
375 |
-
):
|
376 |
-
model = create_model(
|
377 |
-
model_name,
|
378 |
-
pretrained,
|
379 |
-
precision=precision,
|
380 |
-
device=device,
|
381 |
-
jit=jit,
|
382 |
-
force_quick_gelu=force_quick_gelu,
|
383 |
-
force_custom_clip=force_custom_clip,
|
384 |
-
force_patch_dropout=force_patch_dropout,
|
385 |
-
pretrained_image=pretrained_image,
|
386 |
-
pretrained_text=pretrained_text,
|
387 |
-
pretrained_hf=pretrained_hf,
|
388 |
-
pretrained_visual_model=pretrained_visual_model,
|
389 |
-
pretrained_text_model=pretrained_text_model,
|
390 |
-
cache_dir=cache_dir,
|
391 |
-
skip_list=skip_list,
|
392 |
-
)
|
393 |
-
|
394 |
-
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
395 |
-
image_std = image_std or getattr(model.visual, 'image_std', None)
|
396 |
-
preprocess_train = image_transform(
|
397 |
-
model.visual.image_size,
|
398 |
-
is_train=True,
|
399 |
-
mean=image_mean,
|
400 |
-
std=image_std
|
401 |
-
)
|
402 |
-
preprocess_val = image_transform(
|
403 |
-
model.visual.image_size,
|
404 |
-
is_train=False,
|
405 |
-
mean=image_mean,
|
406 |
-
std=image_std
|
407 |
-
)
|
408 |
-
|
409 |
-
return model, preprocess_train, preprocess_val
|
410 |
-
|
411 |
-
def create_model_from_pretrained(
|
412 |
-
model_name: str,
|
413 |
-
pretrained: str,
|
414 |
-
precision: str = 'fp32',
|
415 |
-
device: Union[str, torch.device] = 'cpu',
|
416 |
-
jit: bool = False,
|
417 |
-
force_quick_gelu: bool = False,
|
418 |
-
force_custom_clip: bool = False,
|
419 |
-
force_patch_dropout: Optional[float] = None,
|
420 |
-
return_transform: bool = True,
|
421 |
-
image_mean: Optional[Tuple[float, ...]] = None,
|
422 |
-
image_std: Optional[Tuple[float, ...]] = None,
|
423 |
-
cache_dir: Optional[str] = None,
|
424 |
-
is_frozen: bool = False,
|
425 |
-
):
|
426 |
-
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
|
427 |
-
raise RuntimeError(
|
428 |
-
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
|
429 |
-
f' Use open_clip.list_pretrained() to find one.')
|
430 |
-
|
431 |
-
model = create_model(
|
432 |
-
model_name,
|
433 |
-
pretrained,
|
434 |
-
precision=precision,
|
435 |
-
device=device,
|
436 |
-
jit=jit,
|
437 |
-
force_quick_gelu=force_quick_gelu,
|
438 |
-
force_custom_clip=force_custom_clip,
|
439 |
-
force_patch_dropout=force_patch_dropout,
|
440 |
-
cache_dir=cache_dir,
|
441 |
-
)
|
442 |
-
|
443 |
-
if is_frozen:
|
444 |
-
for param in model.parameters():
|
445 |
-
param.requires_grad = False
|
446 |
-
|
447 |
-
if not return_transform:
|
448 |
-
return model
|
449 |
-
|
450 |
-
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
451 |
-
image_std = image_std or getattr(model.visual, 'image_std', None)
|
452 |
-
preprocess = image_transform(
|
453 |
-
model.visual.image_size,
|
454 |
-
is_train=False,
|
455 |
-
mean=image_mean,
|
456 |
-
std=image_std
|
457 |
-
)
|
458 |
-
|
459 |
-
return model, preprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/hf_configs.py
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
# HF architecture dict:
|
2 |
-
arch_dict = {
|
3 |
-
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
4 |
-
"roberta": {
|
5 |
-
"config_names": {
|
6 |
-
"context_length": "max_position_embeddings",
|
7 |
-
"vocab_size": "vocab_size",
|
8 |
-
"width": "hidden_size",
|
9 |
-
"heads": "num_attention_heads",
|
10 |
-
"layers": "num_hidden_layers",
|
11 |
-
"layer_attr": "layer",
|
12 |
-
"token_embeddings_attr": "embeddings"
|
13 |
-
},
|
14 |
-
"pooler": "mean_pooler",
|
15 |
-
},
|
16 |
-
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
17 |
-
"xlm-roberta": {
|
18 |
-
"config_names": {
|
19 |
-
"context_length": "max_position_embeddings",
|
20 |
-
"vocab_size": "vocab_size",
|
21 |
-
"width": "hidden_size",
|
22 |
-
"heads": "num_attention_heads",
|
23 |
-
"layers": "num_hidden_layers",
|
24 |
-
"layer_attr": "layer",
|
25 |
-
"token_embeddings_attr": "embeddings"
|
26 |
-
},
|
27 |
-
"pooler": "mean_pooler",
|
28 |
-
},
|
29 |
-
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
30 |
-
"mt5": {
|
31 |
-
"config_names": {
|
32 |
-
# unlimited seqlen
|
33 |
-
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
34 |
-
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
35 |
-
"context_length": "",
|
36 |
-
"vocab_size": "vocab_size",
|
37 |
-
"width": "d_model",
|
38 |
-
"heads": "num_heads",
|
39 |
-
"layers": "num_layers",
|
40 |
-
"layer_attr": "block",
|
41 |
-
"token_embeddings_attr": "embed_tokens"
|
42 |
-
},
|
43 |
-
"pooler": "mean_pooler",
|
44 |
-
},
|
45 |
-
"bert": {
|
46 |
-
"config_names": {
|
47 |
-
"context_length": "max_position_embeddings",
|
48 |
-
"vocab_size": "vocab_size",
|
49 |
-
"width": "hidden_size",
|
50 |
-
"heads": "num_attention_heads",
|
51 |
-
"layers": "num_hidden_layers",
|
52 |
-
"layer_attr": "layer",
|
53 |
-
"token_embeddings_attr": "embeddings"
|
54 |
-
},
|
55 |
-
"pooler": "mean_pooler",
|
56 |
-
}
|
57 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/hf_model.py
DELETED
@@ -1,248 +0,0 @@
|
|
1 |
-
""" huggingface model adapter
|
2 |
-
|
3 |
-
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
|
4 |
-
"""
|
5 |
-
|
6 |
-
import re
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
from torch.nn import functional as F
|
11 |
-
from torch import TensorType
|
12 |
-
try:
|
13 |
-
import transformers
|
14 |
-
from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig
|
15 |
-
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
|
16 |
-
BaseModelOutputWithPoolingAndCrossAttentions
|
17 |
-
except ImportError as e:
|
18 |
-
transformers = None
|
19 |
-
|
20 |
-
|
21 |
-
class BaseModelOutput:
|
22 |
-
pass
|
23 |
-
|
24 |
-
|
25 |
-
class PretrainedConfig:
|
26 |
-
pass
|
27 |
-
|
28 |
-
from .hf_configs import arch_dict
|
29 |
-
|
30 |
-
# utils
|
31 |
-
def _camel2snake(s):
|
32 |
-
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
33 |
-
|
34 |
-
# TODO: ?last - for gpt-like models
|
35 |
-
_POOLERS = {}
|
36 |
-
|
37 |
-
def register_pooler(cls):
|
38 |
-
"""Decorator registering pooler class"""
|
39 |
-
_POOLERS[_camel2snake(cls.__name__)] = cls
|
40 |
-
return cls
|
41 |
-
|
42 |
-
|
43 |
-
@register_pooler
|
44 |
-
class MeanPooler(nn.Module):
|
45 |
-
"""Mean pooling"""
|
46 |
-
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
47 |
-
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
48 |
-
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
49 |
-
|
50 |
-
@register_pooler
|
51 |
-
class MaxPooler(nn.Module):
|
52 |
-
"""Max pooling"""
|
53 |
-
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
54 |
-
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
|
55 |
-
return masked_output.max(1).values
|
56 |
-
|
57 |
-
@register_pooler
|
58 |
-
class ClsPooler(nn.Module):
|
59 |
-
"""CLS token pooling"""
|
60 |
-
def __init__(self, use_pooler_output=True):
|
61 |
-
super().__init__()
|
62 |
-
self.cls_token_position = 0
|
63 |
-
self.use_pooler_output = use_pooler_output
|
64 |
-
|
65 |
-
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
66 |
-
|
67 |
-
if (self.use_pooler_output and
|
68 |
-
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
|
69 |
-
(x.pooler_output is not None)
|
70 |
-
):
|
71 |
-
return x.pooler_output
|
72 |
-
|
73 |
-
return x.last_hidden_state[:, self.cls_token_position, :]
|
74 |
-
|
75 |
-
class HFTextEncoder(nn.Module):
|
76 |
-
"""HuggingFace model adapter"""
|
77 |
-
def __init__(
|
78 |
-
self,
|
79 |
-
model_name_or_path: str,
|
80 |
-
output_dim: int,
|
81 |
-
tokenizer_name: str = None,
|
82 |
-
config: PretrainedConfig = None,
|
83 |
-
pooler_type: str = None,
|
84 |
-
proj: str = None,
|
85 |
-
pretrained: bool = True,
|
86 |
-
masked_language_modeling: bool = False):
|
87 |
-
super().__init__()
|
88 |
-
|
89 |
-
self.output_dim = output_dim
|
90 |
-
|
91 |
-
# TODO: find better way to get this information
|
92 |
-
uses_transformer_pooler = (pooler_type == "cls_pooler")
|
93 |
-
|
94 |
-
if transformers is None:
|
95 |
-
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
|
96 |
-
if config is None:
|
97 |
-
self.config = AutoConfig.from_pretrained(model_name_or_path)
|
98 |
-
if masked_language_modeling:
|
99 |
-
create_func, model_args = (AutoModelForMaskedLM.from_pretrained, model_name_or_path) if pretrained else (
|
100 |
-
AutoModelForMaskedLM.from_config, self.config)
|
101 |
-
else:
|
102 |
-
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
|
103 |
-
AutoModel.from_config, self.config)
|
104 |
-
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
|
105 |
-
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
|
106 |
-
self.transformer = create_func(model_args)
|
107 |
-
self.transformer = self.transformer.encoder
|
108 |
-
else:
|
109 |
-
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
|
110 |
-
else:
|
111 |
-
self.config = config
|
112 |
-
if masked_language_modeling:
|
113 |
-
self.transformer = AutoModelForMaskedLM.from_config(config)
|
114 |
-
else:
|
115 |
-
self.transformer = AutoModel.from_config(config)
|
116 |
-
|
117 |
-
if pooler_type is None: # get default arch pooler
|
118 |
-
self.pooler = _POOLERS[(arch_dict[self.config.model_type]["pooler"])]()
|
119 |
-
else:
|
120 |
-
self.pooler = _POOLERS[pooler_type]()
|
121 |
-
|
122 |
-
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
|
123 |
-
if (d_model == output_dim) and (proj is None): # do we always need a proj?
|
124 |
-
self.proj = nn.Identity()
|
125 |
-
elif proj == 'linear':
|
126 |
-
self.proj = nn.Linear(d_model, output_dim, bias=False)
|
127 |
-
elif proj == 'mlp':
|
128 |
-
hidden_size = (d_model + output_dim) // 2
|
129 |
-
self.proj = nn.Sequential(
|
130 |
-
nn.Linear(d_model, hidden_size, bias=False),
|
131 |
-
nn.GELU(),
|
132 |
-
nn.Linear(hidden_size, output_dim, bias=False),
|
133 |
-
)
|
134 |
-
|
135 |
-
# self.itm_proj = nn.Linear(d_model, 2, bias=False)
|
136 |
-
# self.mlm_proj = nn.Linear(d_model, self.config.vocab_size), bias=False)
|
137 |
-
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
138 |
-
|
139 |
-
# def forward_itm(self, x:TensorType, image_embeds:TensorType) -> TensorType:
|
140 |
-
# image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device)
|
141 |
-
# attn_mask = (x != self.config.pad_token_id).long()
|
142 |
-
# out = self.transformer(
|
143 |
-
# input_ids=x,
|
144 |
-
# attention_mask=attn_mask,
|
145 |
-
# encoder_hidden_states = image_embeds,
|
146 |
-
# encoder_attention_mask = image_atts,
|
147 |
-
# )
|
148 |
-
# pooled_out = self.pooler(out, attn_mask)
|
149 |
-
|
150 |
-
# return self.itm_proj(pooled_out)
|
151 |
-
|
152 |
-
def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
|
153 |
-
if masked_indices is None:
|
154 |
-
masked_indices = torch.bernoulli(probability_matrix).bool()
|
155 |
-
|
156 |
-
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
|
157 |
-
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
|
158 |
-
|
159 |
-
if targets is not None:
|
160 |
-
targets[~masked_indices] = -100 # We only compute loss on masked tokens
|
161 |
-
|
162 |
-
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
163 |
-
indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
|
164 |
-
input_ids[indices_replaced] = self.tokenizer.mask_token_id
|
165 |
-
|
166 |
-
# 10% of the time, we replace masked input tokens with random word
|
167 |
-
indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
168 |
-
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
|
169 |
-
input_ids[indices_random] = random_words[indices_random]
|
170 |
-
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
171 |
-
|
172 |
-
if targets is not None:
|
173 |
-
return input_ids, targets
|
174 |
-
else:
|
175 |
-
return input_ids
|
176 |
-
|
177 |
-
def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25):
|
178 |
-
labels = input_ids.clone()
|
179 |
-
attn_mask = (input_ids != self.config.pad_token_id).long()
|
180 |
-
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device)
|
181 |
-
vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"])
|
182 |
-
probability_matrix = torch.full(labels.shape, mlm_probability)
|
183 |
-
input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels,
|
184 |
-
probability_matrix = probability_matrix)
|
185 |
-
mlm_output = self.transformer(input_ids,
|
186 |
-
attention_mask = attn_mask,
|
187 |
-
encoder_hidden_states = image_embeds,
|
188 |
-
encoder_attention_mask = image_atts,
|
189 |
-
return_dict = True,
|
190 |
-
labels = labels,
|
191 |
-
)
|
192 |
-
return mlm_output.loss
|
193 |
-
# mlm_output = self.transformer(input_ids,
|
194 |
-
# attention_mask = attn_mask,
|
195 |
-
# encoder_hidden_states = image_embeds,
|
196 |
-
# encoder_attention_mask = image_atts,
|
197 |
-
# return_dict = True,
|
198 |
-
# ).last_hidden_state
|
199 |
-
# logits = self.mlm_proj(mlm_output)
|
200 |
-
|
201 |
-
# # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size)
|
202 |
-
# logits = logits[:, 1:, :].contiguous().view(-1, vocab_size)
|
203 |
-
# labels = labels[:, 1:].contiguous().view(-1)
|
204 |
-
|
205 |
-
# mlm_loss = F.cross_entropy(
|
206 |
-
# logits,
|
207 |
-
# labels,
|
208 |
-
# # label_smoothing=0.1,
|
209 |
-
# )
|
210 |
-
# return mlm_loss
|
211 |
-
|
212 |
-
|
213 |
-
def forward(self, x:TensorType) -> TensorType:
|
214 |
-
attn_mask = (x != self.config.pad_token_id).long()
|
215 |
-
out = self.transformer(input_ids=x, attention_mask=attn_mask)
|
216 |
-
pooled_out = self.pooler(out, attn_mask)
|
217 |
-
|
218 |
-
return self.proj(pooled_out)
|
219 |
-
|
220 |
-
def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
221 |
-
if not unlocked_layers: # full freezing
|
222 |
-
for n, p in self.transformer.named_parameters():
|
223 |
-
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
224 |
-
return
|
225 |
-
|
226 |
-
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
227 |
-
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
228 |
-
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
229 |
-
embeddings = getattr(
|
230 |
-
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
231 |
-
modules = [embeddings, *layer_list][:-unlocked_layers]
|
232 |
-
# freeze layers
|
233 |
-
for module in modules:
|
234 |
-
for n, p in module.named_parameters():
|
235 |
-
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
236 |
-
|
237 |
-
|
238 |
-
@torch.jit.ignore
|
239 |
-
def set_grad_checkpointing(self, enable=True):
|
240 |
-
self.transformer.gradient_checkpointing_enable()
|
241 |
-
|
242 |
-
def get_num_layers(self):
|
243 |
-
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
244 |
-
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
245 |
-
return len(layer_list)
|
246 |
-
|
247 |
-
def init_parameters(self):
|
248 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/loss.py
DELETED
@@ -1,138 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.nn import functional as F
|
5 |
-
|
6 |
-
try:
|
7 |
-
import torch.distributed.nn
|
8 |
-
from torch import distributed as dist
|
9 |
-
has_distributed = True
|
10 |
-
except ImportError:
|
11 |
-
has_distributed = False
|
12 |
-
|
13 |
-
try:
|
14 |
-
import horovod.torch as hvd
|
15 |
-
except ImportError:
|
16 |
-
hvd = None
|
17 |
-
|
18 |
-
from timm.loss import LabelSmoothingCrossEntropy
|
19 |
-
|
20 |
-
|
21 |
-
def gather_features(
|
22 |
-
image_features,
|
23 |
-
text_features,
|
24 |
-
local_loss=False,
|
25 |
-
gather_with_grad=False,
|
26 |
-
rank=0,
|
27 |
-
world_size=1,
|
28 |
-
use_horovod=False
|
29 |
-
):
|
30 |
-
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
|
31 |
-
if use_horovod:
|
32 |
-
assert hvd is not None, 'Please install horovod'
|
33 |
-
if gather_with_grad:
|
34 |
-
all_image_features = hvd.allgather(image_features)
|
35 |
-
all_text_features = hvd.allgather(text_features)
|
36 |
-
else:
|
37 |
-
with torch.no_grad():
|
38 |
-
all_image_features = hvd.allgather(image_features)
|
39 |
-
all_text_features = hvd.allgather(text_features)
|
40 |
-
if not local_loss:
|
41 |
-
# ensure grads for local rank when all_* features don't have a gradient
|
42 |
-
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
|
43 |
-
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
44 |
-
gathered_image_features[rank] = image_features
|
45 |
-
gathered_text_features[rank] = text_features
|
46 |
-
all_image_features = torch.cat(gathered_image_features, dim=0)
|
47 |
-
all_text_features = torch.cat(gathered_text_features, dim=0)
|
48 |
-
else:
|
49 |
-
# We gather tensors from all gpus
|
50 |
-
if gather_with_grad:
|
51 |
-
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
|
52 |
-
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
53 |
-
# all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0)
|
54 |
-
# all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0)
|
55 |
-
else:
|
56 |
-
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
|
57 |
-
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
58 |
-
dist.all_gather(gathered_image_features, image_features)
|
59 |
-
dist.all_gather(gathered_text_features, text_features)
|
60 |
-
if not local_loss:
|
61 |
-
# ensure grads for local rank when all_* features don't have a gradient
|
62 |
-
gathered_image_features[rank] = image_features
|
63 |
-
gathered_text_features[rank] = text_features
|
64 |
-
all_image_features = torch.cat(gathered_image_features, dim=0)
|
65 |
-
all_text_features = torch.cat(gathered_text_features, dim=0)
|
66 |
-
|
67 |
-
return all_image_features, all_text_features
|
68 |
-
|
69 |
-
|
70 |
-
class ClipLoss(nn.Module):
|
71 |
-
|
72 |
-
def __init__(
|
73 |
-
self,
|
74 |
-
local_loss=False,
|
75 |
-
gather_with_grad=False,
|
76 |
-
cache_labels=False,
|
77 |
-
rank=0,
|
78 |
-
world_size=1,
|
79 |
-
use_horovod=False,
|
80 |
-
smoothing=0.,
|
81 |
-
):
|
82 |
-
super().__init__()
|
83 |
-
self.local_loss = local_loss
|
84 |
-
self.gather_with_grad = gather_with_grad
|
85 |
-
self.cache_labels = cache_labels
|
86 |
-
self.rank = rank
|
87 |
-
self.world_size = world_size
|
88 |
-
self.use_horovod = use_horovod
|
89 |
-
self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None
|
90 |
-
|
91 |
-
# cache state
|
92 |
-
self.prev_num_logits = 0
|
93 |
-
self.labels = {}
|
94 |
-
|
95 |
-
def forward(self, image_features, text_features, logit_scale=1.):
|
96 |
-
device = image_features.device
|
97 |
-
if self.world_size > 1:
|
98 |
-
all_image_features, all_text_features = gather_features(
|
99 |
-
image_features, text_features,
|
100 |
-
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
|
101 |
-
|
102 |
-
if self.local_loss:
|
103 |
-
logits_per_image = logit_scale * image_features @ all_text_features.T
|
104 |
-
logits_per_text = logit_scale * text_features @ all_image_features.T
|
105 |
-
else:
|
106 |
-
logits_per_image = logit_scale * all_image_features @ all_text_features.T
|
107 |
-
logits_per_text = logits_per_image.T
|
108 |
-
else:
|
109 |
-
logits_per_image = logit_scale * image_features @ text_features.T
|
110 |
-
logits_per_text = logit_scale * text_features @ image_features.T
|
111 |
-
# calculated ground-truth and cache if enabled
|
112 |
-
num_logits = logits_per_image.shape[0]
|
113 |
-
if self.prev_num_logits != num_logits or device not in self.labels:
|
114 |
-
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
115 |
-
if self.world_size > 1 and self.local_loss:
|
116 |
-
labels = labels + num_logits * self.rank
|
117 |
-
if self.cache_labels:
|
118 |
-
self.labels[device] = labels
|
119 |
-
self.prev_num_logits = num_logits
|
120 |
-
else:
|
121 |
-
labels = self.labels[device]
|
122 |
-
|
123 |
-
if self.label_smoothing_cross_entropy:
|
124 |
-
total_loss = (
|
125 |
-
self.label_smoothing_cross_entropy(logits_per_image, labels) +
|
126 |
-
self.label_smoothing_cross_entropy(logits_per_text, labels)
|
127 |
-
) / 2
|
128 |
-
else:
|
129 |
-
total_loss = (
|
130 |
-
F.cross_entropy(logits_per_image, labels) +
|
131 |
-
F.cross_entropy(logits_per_text, labels)
|
132 |
-
) / 2
|
133 |
-
|
134 |
-
acc = None
|
135 |
-
i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image)
|
136 |
-
t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text)
|
137 |
-
acc = {"i2t": i2t_acc, "t2i": t2i_acc}
|
138 |
-
return total_loss, acc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model.py
DELETED
@@ -1,439 +0,0 @@
|
|
1 |
-
""" CLIP Model
|
2 |
-
|
3 |
-
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
-
"""
|
5 |
-
import os
|
6 |
-
from dataclasses import dataclass
|
7 |
-
from typing import Optional, Tuple, Union
|
8 |
-
from functools import partial
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
import torch
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from torch import nn
|
14 |
-
|
15 |
-
try:
|
16 |
-
from .hf_model import HFTextEncoder
|
17 |
-
except:
|
18 |
-
HFTextEncoder = None
|
19 |
-
from .modified_resnet import ModifiedResNet
|
20 |
-
from .timm_model import TimmModel
|
21 |
-
from .eva_vit_model import EVAVisionTransformer
|
22 |
-
from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
|
23 |
-
|
24 |
-
try:
|
25 |
-
from apex.normalization import FusedLayerNorm
|
26 |
-
except:
|
27 |
-
FusedLayerNorm = LayerNorm
|
28 |
-
print("Please 'pip install apex'")
|
29 |
-
|
30 |
-
try:
|
31 |
-
import xformers.ops as xops
|
32 |
-
except ImportError:
|
33 |
-
xops = None
|
34 |
-
print("Please 'pip install xformers'")
|
35 |
-
|
36 |
-
@dataclass
|
37 |
-
class CLIPVisionCfg:
|
38 |
-
layers: Union[Tuple[int, int, int, int], int] = 12
|
39 |
-
width: int = 768
|
40 |
-
head_width: int = 64
|
41 |
-
mlp_ratio: float = 4.0
|
42 |
-
patch_size: int = 16
|
43 |
-
image_size: Union[Tuple[int, int], int] = 224
|
44 |
-
ls_init_value: Optional[float] = None # layer scale initial value
|
45 |
-
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
46 |
-
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
47 |
-
drop_path_rate: Optional[float] = None # drop path rate
|
48 |
-
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
49 |
-
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
50 |
-
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
51 |
-
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
52 |
-
timm_proj_bias: bool = False # enable bias final projection
|
53 |
-
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
|
54 |
-
qkv_bias: bool = True
|
55 |
-
fusedLN: bool = False
|
56 |
-
xattn: bool = False
|
57 |
-
postnorm: bool = False
|
58 |
-
rope: bool = False
|
59 |
-
pt_hw_seq_len: int = 16 # 224/14
|
60 |
-
intp_freq: bool = False
|
61 |
-
naiveswiglu: bool = False
|
62 |
-
subln: bool = False
|
63 |
-
|
64 |
-
|
65 |
-
@dataclass
|
66 |
-
class CLIPTextCfg:
|
67 |
-
context_length: int = 77
|
68 |
-
vocab_size: int = 49408
|
69 |
-
width: int = 512
|
70 |
-
heads: int = 8
|
71 |
-
layers: int = 12
|
72 |
-
ls_init_value: Optional[float] = None # layer scale initial value
|
73 |
-
hf_model_name: str = None
|
74 |
-
hf_tokenizer_name: str = None
|
75 |
-
hf_model_pretrained: bool = True
|
76 |
-
proj: str = 'mlp'
|
77 |
-
pooler_type: str = 'mean_pooler'
|
78 |
-
masked_language_modeling: bool = False
|
79 |
-
fusedLN: bool = False
|
80 |
-
xattn: bool = False
|
81 |
-
attn_mask: bool = True
|
82 |
-
|
83 |
-
def get_cast_dtype(precision: str):
|
84 |
-
cast_dtype = None
|
85 |
-
if precision == 'bf16':
|
86 |
-
cast_dtype = torch.bfloat16
|
87 |
-
elif precision == 'fp16':
|
88 |
-
cast_dtype = torch.float16
|
89 |
-
return cast_dtype
|
90 |
-
|
91 |
-
|
92 |
-
def _build_vision_tower(
|
93 |
-
embed_dim: int,
|
94 |
-
vision_cfg: CLIPVisionCfg,
|
95 |
-
quick_gelu: bool = False,
|
96 |
-
cast_dtype: Optional[torch.dtype] = None
|
97 |
-
):
|
98 |
-
if isinstance(vision_cfg, dict):
|
99 |
-
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
100 |
-
|
101 |
-
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
102 |
-
# memory efficient in recent PyTorch releases (>= 1.10).
|
103 |
-
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
104 |
-
act_layer = QuickGELU if quick_gelu else nn.GELU
|
105 |
-
|
106 |
-
if vision_cfg.eva_model_name:
|
107 |
-
vision_heads = vision_cfg.width // vision_cfg.head_width
|
108 |
-
norm_layer = LayerNorm
|
109 |
-
|
110 |
-
visual = EVAVisionTransformer(
|
111 |
-
img_size=vision_cfg.image_size,
|
112 |
-
patch_size=vision_cfg.patch_size,
|
113 |
-
num_classes=embed_dim,
|
114 |
-
use_mean_pooling=vision_cfg.global_average_pool, #False
|
115 |
-
init_values=vision_cfg.ls_init_value,
|
116 |
-
patch_dropout=vision_cfg.patch_dropout,
|
117 |
-
embed_dim=vision_cfg.width,
|
118 |
-
depth=vision_cfg.layers,
|
119 |
-
num_heads=vision_heads,
|
120 |
-
mlp_ratio=vision_cfg.mlp_ratio,
|
121 |
-
qkv_bias=vision_cfg.qkv_bias,
|
122 |
-
drop_path_rate=vision_cfg.drop_path_rate,
|
123 |
-
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
|
124 |
-
xattn=vision_cfg.xattn,
|
125 |
-
rope=vision_cfg.rope,
|
126 |
-
postnorm=vision_cfg.postnorm,
|
127 |
-
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
|
128 |
-
intp_freq= vision_cfg.intp_freq,
|
129 |
-
naiveswiglu= vision_cfg.naiveswiglu,
|
130 |
-
subln= vision_cfg.subln
|
131 |
-
)
|
132 |
-
elif vision_cfg.timm_model_name:
|
133 |
-
visual = TimmModel(
|
134 |
-
vision_cfg.timm_model_name,
|
135 |
-
pretrained=vision_cfg.timm_model_pretrained,
|
136 |
-
pool=vision_cfg.timm_pool,
|
137 |
-
proj=vision_cfg.timm_proj,
|
138 |
-
proj_bias=vision_cfg.timm_proj_bias,
|
139 |
-
embed_dim=embed_dim,
|
140 |
-
image_size=vision_cfg.image_size
|
141 |
-
)
|
142 |
-
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
|
143 |
-
elif isinstance(vision_cfg.layers, (tuple, list)):
|
144 |
-
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
145 |
-
visual = ModifiedResNet(
|
146 |
-
layers=vision_cfg.layers,
|
147 |
-
output_dim=embed_dim,
|
148 |
-
heads=vision_heads,
|
149 |
-
image_size=vision_cfg.image_size,
|
150 |
-
width=vision_cfg.width
|
151 |
-
)
|
152 |
-
else:
|
153 |
-
vision_heads = vision_cfg.width // vision_cfg.head_width
|
154 |
-
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
155 |
-
visual = VisionTransformer(
|
156 |
-
image_size=vision_cfg.image_size,
|
157 |
-
patch_size=vision_cfg.patch_size,
|
158 |
-
width=vision_cfg.width,
|
159 |
-
layers=vision_cfg.layers,
|
160 |
-
heads=vision_heads,
|
161 |
-
mlp_ratio=vision_cfg.mlp_ratio,
|
162 |
-
ls_init_value=vision_cfg.ls_init_value,
|
163 |
-
patch_dropout=vision_cfg.patch_dropout,
|
164 |
-
global_average_pool=vision_cfg.global_average_pool,
|
165 |
-
output_dim=embed_dim,
|
166 |
-
act_layer=act_layer,
|
167 |
-
norm_layer=norm_layer,
|
168 |
-
)
|
169 |
-
|
170 |
-
return visual
|
171 |
-
|
172 |
-
|
173 |
-
def _build_text_tower(
|
174 |
-
embed_dim: int,
|
175 |
-
text_cfg: CLIPTextCfg,
|
176 |
-
quick_gelu: bool = False,
|
177 |
-
cast_dtype: Optional[torch.dtype] = None,
|
178 |
-
):
|
179 |
-
if isinstance(text_cfg, dict):
|
180 |
-
text_cfg = CLIPTextCfg(**text_cfg)
|
181 |
-
|
182 |
-
if text_cfg.hf_model_name:
|
183 |
-
text = HFTextEncoder(
|
184 |
-
text_cfg.hf_model_name,
|
185 |
-
output_dim=embed_dim,
|
186 |
-
tokenizer_name=text_cfg.hf_tokenizer_name,
|
187 |
-
proj=text_cfg.proj,
|
188 |
-
pooler_type=text_cfg.pooler_type,
|
189 |
-
masked_language_modeling=text_cfg.masked_language_modeling
|
190 |
-
)
|
191 |
-
else:
|
192 |
-
act_layer = QuickGELU if quick_gelu else nn.GELU
|
193 |
-
norm_layer = LayerNorm
|
194 |
-
|
195 |
-
text = TextTransformer(
|
196 |
-
context_length=text_cfg.context_length,
|
197 |
-
vocab_size=text_cfg.vocab_size,
|
198 |
-
width=text_cfg.width,
|
199 |
-
heads=text_cfg.heads,
|
200 |
-
layers=text_cfg.layers,
|
201 |
-
ls_init_value=text_cfg.ls_init_value,
|
202 |
-
output_dim=embed_dim,
|
203 |
-
act_layer=act_layer,
|
204 |
-
norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
|
205 |
-
xattn=text_cfg.xattn,
|
206 |
-
attn_mask=text_cfg.attn_mask,
|
207 |
-
)
|
208 |
-
return text
|
209 |
-
|
210 |
-
class CLIP(nn.Module):
|
211 |
-
def __init__(
|
212 |
-
self,
|
213 |
-
embed_dim: int,
|
214 |
-
vision_cfg: CLIPVisionCfg,
|
215 |
-
text_cfg: CLIPTextCfg,
|
216 |
-
quick_gelu: bool = False,
|
217 |
-
cast_dtype: Optional[torch.dtype] = None,
|
218 |
-
):
|
219 |
-
super().__init__()
|
220 |
-
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
221 |
-
|
222 |
-
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
223 |
-
self.transformer = text.transformer
|
224 |
-
self.vocab_size = text.vocab_size
|
225 |
-
self.token_embedding = text.token_embedding
|
226 |
-
self.positional_embedding = text.positional_embedding
|
227 |
-
self.ln_final = text.ln_final
|
228 |
-
self.text_projection = text.text_projection
|
229 |
-
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
|
230 |
-
|
231 |
-
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
232 |
-
|
233 |
-
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
234 |
-
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
235 |
-
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
236 |
-
|
237 |
-
@torch.jit.ignore
|
238 |
-
def set_grad_checkpointing(self, enable=True):
|
239 |
-
self.visual.set_grad_checkpointing(enable)
|
240 |
-
self.transformer.grad_checkpointing = enable
|
241 |
-
|
242 |
-
@torch.jit.ignore
|
243 |
-
def no_weight_decay(self):
|
244 |
-
return {'logit_scale'}
|
245 |
-
|
246 |
-
def encode_image(self, image, normalize: bool = False):
|
247 |
-
features = self.visual(image)
|
248 |
-
return F.normalize(features, dim=-1) if normalize else features
|
249 |
-
|
250 |
-
def encode_text(self, text, normalize: bool = False):
|
251 |
-
cast_dtype = self.transformer.get_cast_dtype()
|
252 |
-
|
253 |
-
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
254 |
-
|
255 |
-
x = x + self.positional_embedding.to(cast_dtype)
|
256 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
257 |
-
x = self.transformer(x, attn_mask=self.attn_mask)
|
258 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
259 |
-
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
260 |
-
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
261 |
-
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
262 |
-
return F.normalize(x, dim=-1) if normalize else x
|
263 |
-
|
264 |
-
def forward(self, image, text):
|
265 |
-
image_features = self.encode_image(image, normalize=True)
|
266 |
-
text_features = self.encode_text(text, normalize=True)
|
267 |
-
return image_features, text_features, self.logit_scale.exp()
|
268 |
-
|
269 |
-
|
270 |
-
class CustomCLIP(nn.Module):
|
271 |
-
def __init__(
|
272 |
-
self,
|
273 |
-
embed_dim: int,
|
274 |
-
vision_cfg: CLIPVisionCfg,
|
275 |
-
text_cfg: CLIPTextCfg,
|
276 |
-
quick_gelu: bool = False,
|
277 |
-
cast_dtype: Optional[torch.dtype] = None,
|
278 |
-
itm_task: bool = False,
|
279 |
-
):
|
280 |
-
super().__init__()
|
281 |
-
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
282 |
-
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
283 |
-
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
284 |
-
|
285 |
-
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
286 |
-
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
287 |
-
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
288 |
-
|
289 |
-
def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
290 |
-
self.text.lock(unlocked_layers, freeze_layer_norm)
|
291 |
-
|
292 |
-
@torch.jit.ignore
|
293 |
-
def set_grad_checkpointing(self, enable=True):
|
294 |
-
self.visual.set_grad_checkpointing(enable)
|
295 |
-
self.text.set_grad_checkpointing(enable)
|
296 |
-
|
297 |
-
@torch.jit.ignore
|
298 |
-
def no_weight_decay(self):
|
299 |
-
return {'logit_scale'}
|
300 |
-
|
301 |
-
def encode_image(self, image, normalize: bool = False):
|
302 |
-
features = self.visual(image)
|
303 |
-
return F.normalize(features, dim=-1) if normalize else features
|
304 |
-
|
305 |
-
def encode_text(self, text, normalize: bool = False):
|
306 |
-
features = self.text(text)
|
307 |
-
return F.normalize(features, dim=-1) if normalize else features
|
308 |
-
|
309 |
-
def forward(self, image, text):
|
310 |
-
image_features = self.encode_image(image, normalize=True)
|
311 |
-
text_features = self.encode_text(text, normalize=True)
|
312 |
-
return image_features, text_features, self.logit_scale.exp()
|
313 |
-
|
314 |
-
|
315 |
-
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
316 |
-
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
317 |
-
|
318 |
-
def _convert_weights(l):
|
319 |
-
|
320 |
-
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
321 |
-
l.weight.data = l.weight.data.to(dtype)
|
322 |
-
if l.bias is not None:
|
323 |
-
l.bias.data = l.bias.data.to(dtype)
|
324 |
-
|
325 |
-
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
326 |
-
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
327 |
-
tensor = getattr(l, attr, None)
|
328 |
-
if tensor is not None:
|
329 |
-
tensor.data = tensor.data.to(dtype)
|
330 |
-
|
331 |
-
if isinstance(l, nn.Parameter):
|
332 |
-
l.data = l.data.to(dtype)
|
333 |
-
|
334 |
-
for name in ["text_projection", "proj"]:
|
335 |
-
if hasattr(l, name) and isinstance(l, nn.Parameter):
|
336 |
-
attr = getattr(l, name, None)
|
337 |
-
if attr is not None:
|
338 |
-
attr.data = attr.data.to(dtype)
|
339 |
-
|
340 |
-
model.apply(_convert_weights)
|
341 |
-
|
342 |
-
|
343 |
-
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
344 |
-
|
345 |
-
|
346 |
-
# used to maintain checkpoint compatibility
|
347 |
-
def convert_to_custom_text_state_dict(state_dict: dict):
|
348 |
-
if 'text_projection' in state_dict:
|
349 |
-
# old format state_dict, move text tower -> .text
|
350 |
-
new_state_dict = {}
|
351 |
-
for k, v in state_dict.items():
|
352 |
-
if any(k.startswith(p) for p in (
|
353 |
-
'text_projection',
|
354 |
-
'positional_embedding',
|
355 |
-
'token_embedding',
|
356 |
-
'transformer',
|
357 |
-
'ln_final',
|
358 |
-
'logit_scale'
|
359 |
-
)):
|
360 |
-
k = 'text.' + k
|
361 |
-
new_state_dict[k] = v
|
362 |
-
return new_state_dict
|
363 |
-
return state_dict
|
364 |
-
|
365 |
-
|
366 |
-
def build_model_from_openai_state_dict(
|
367 |
-
state_dict: dict,
|
368 |
-
quick_gelu=True,
|
369 |
-
cast_dtype=torch.float16,
|
370 |
-
):
|
371 |
-
vit = "visual.proj" in state_dict
|
372 |
-
|
373 |
-
if vit:
|
374 |
-
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
375 |
-
vision_layers = len(
|
376 |
-
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
377 |
-
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
378 |
-
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
379 |
-
image_size = vision_patch_size * grid_size
|
380 |
-
else:
|
381 |
-
counts: list = [
|
382 |
-
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
383 |
-
vision_layers = tuple(counts)
|
384 |
-
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
385 |
-
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
386 |
-
vision_patch_size = None
|
387 |
-
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
388 |
-
image_size = output_width * 32
|
389 |
-
|
390 |
-
embed_dim = state_dict["text_projection"].shape[1]
|
391 |
-
context_length = state_dict["positional_embedding"].shape[0]
|
392 |
-
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
393 |
-
transformer_width = state_dict["ln_final.weight"].shape[0]
|
394 |
-
transformer_heads = transformer_width // 64
|
395 |
-
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
396 |
-
|
397 |
-
vision_cfg = CLIPVisionCfg(
|
398 |
-
layers=vision_layers,
|
399 |
-
width=vision_width,
|
400 |
-
patch_size=vision_patch_size,
|
401 |
-
image_size=image_size,
|
402 |
-
)
|
403 |
-
text_cfg = CLIPTextCfg(
|
404 |
-
context_length=context_length,
|
405 |
-
vocab_size=vocab_size,
|
406 |
-
width=transformer_width,
|
407 |
-
heads=transformer_heads,
|
408 |
-
layers=transformer_layers
|
409 |
-
)
|
410 |
-
model = CLIP(
|
411 |
-
embed_dim,
|
412 |
-
vision_cfg=vision_cfg,
|
413 |
-
text_cfg=text_cfg,
|
414 |
-
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
415 |
-
cast_dtype=cast_dtype,
|
416 |
-
)
|
417 |
-
|
418 |
-
for key in ["input_resolution", "context_length", "vocab_size"]:
|
419 |
-
state_dict.pop(key, None)
|
420 |
-
|
421 |
-
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
422 |
-
model.load_state_dict(state_dict)
|
423 |
-
return model.eval()
|
424 |
-
|
425 |
-
|
426 |
-
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
427 |
-
model.eval()
|
428 |
-
image_size = model.visual.image_size
|
429 |
-
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
430 |
-
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
431 |
-
model = torch.jit.trace_module(
|
432 |
-
model,
|
433 |
-
inputs=dict(
|
434 |
-
forward=(example_images, example_text),
|
435 |
-
encode_text=(example_text,),
|
436 |
-
encode_image=(example_images,)
|
437 |
-
))
|
438 |
-
model.visual.image_size = image_size
|
439 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model_configs/EVA01-CLIP-B-16.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 512,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 12,
|
6 |
-
"width": 768,
|
7 |
-
"patch_size": 16,
|
8 |
-
"eva_model_name": "eva-clip-b-16",
|
9 |
-
"ls_init_value": 0.1,
|
10 |
-
"drop_path_rate": 0.0
|
11 |
-
},
|
12 |
-
"text_cfg": {
|
13 |
-
"context_length": 77,
|
14 |
-
"vocab_size": 49408,
|
15 |
-
"width": 512,
|
16 |
-
"heads": 8,
|
17 |
-
"layers": 12
|
18 |
-
}
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model_configs/EVA01-CLIP-g-14-plus.json
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 1024,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 40,
|
6 |
-
"width": 1408,
|
7 |
-
"head_width": 88,
|
8 |
-
"mlp_ratio": 4.3637,
|
9 |
-
"patch_size": 14,
|
10 |
-
"eva_model_name": "eva-clip-g-14-x",
|
11 |
-
"drop_path_rate": 0,
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true
|
14 |
-
},
|
15 |
-
"text_cfg": {
|
16 |
-
"context_length": 77,
|
17 |
-
"vocab_size": 49408,
|
18 |
-
"width": 1024,
|
19 |
-
"heads": 16,
|
20 |
-
"layers": 24,
|
21 |
-
"xattn": false,
|
22 |
-
"fusedLN": true
|
23 |
-
}
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model_configs/EVA01-CLIP-g-14.json
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 1024,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 40,
|
6 |
-
"width": 1408,
|
7 |
-
"head_width": 88,
|
8 |
-
"mlp_ratio": 4.3637,
|
9 |
-
"patch_size": 14,
|
10 |
-
"eva_model_name": "eva-clip-g-14-x",
|
11 |
-
"drop_path_rate": 0.4,
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true
|
14 |
-
},
|
15 |
-
"text_cfg": {
|
16 |
-
"context_length": 77,
|
17 |
-
"vocab_size": 49408,
|
18 |
-
"width": 768,
|
19 |
-
"heads": 12,
|
20 |
-
"layers": 12,
|
21 |
-
"xattn": false,
|
22 |
-
"fusedLN": true
|
23 |
-
}
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model_configs/EVA02-CLIP-B-16.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 512,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 12,
|
6 |
-
"width": 768,
|
7 |
-
"head_width": 64,
|
8 |
-
"patch_size": 16,
|
9 |
-
"mlp_ratio": 2.6667,
|
10 |
-
"eva_model_name": "eva-clip-b-16-X",
|
11 |
-
"drop_path_rate": 0.0,
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true,
|
14 |
-
"rope": true,
|
15 |
-
"pt_hw_seq_len": 16,
|
16 |
-
"intp_freq": true,
|
17 |
-
"naiveswiglu": true,
|
18 |
-
"subln": true
|
19 |
-
},
|
20 |
-
"text_cfg": {
|
21 |
-
"context_length": 77,
|
22 |
-
"vocab_size": 49408,
|
23 |
-
"width": 512,
|
24 |
-
"heads": 8,
|
25 |
-
"layers": 12,
|
26 |
-
"xattn": true,
|
27 |
-
"fusedLN": true
|
28 |
-
}
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model_configs/EVA02-CLIP-L-14-336.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 768,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 336,
|
5 |
-
"layers": 24,
|
6 |
-
"width": 1024,
|
7 |
-
"drop_path_rate": 0,
|
8 |
-
"head_width": 64,
|
9 |
-
"mlp_ratio": 2.6667,
|
10 |
-
"patch_size": 14,
|
11 |
-
"eva_model_name": "eva-clip-l-14-336",
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true,
|
14 |
-
"rope": true,
|
15 |
-
"pt_hw_seq_len": 16,
|
16 |
-
"intp_freq": true,
|
17 |
-
"naiveswiglu": true,
|
18 |
-
"subln": true
|
19 |
-
},
|
20 |
-
"text_cfg": {
|
21 |
-
"context_length": 77,
|
22 |
-
"vocab_size": 49408,
|
23 |
-
"width": 768,
|
24 |
-
"heads": 12,
|
25 |
-
"layers": 12,
|
26 |
-
"xattn": false,
|
27 |
-
"fusedLN": true
|
28 |
-
}
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model_configs/EVA02-CLIP-L-14.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 768,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 24,
|
6 |
-
"width": 1024,
|
7 |
-
"drop_path_rate": 0,
|
8 |
-
"head_width": 64,
|
9 |
-
"mlp_ratio": 2.6667,
|
10 |
-
"patch_size": 14,
|
11 |
-
"eva_model_name": "eva-clip-l-14",
|
12 |
-
"xattn": true,
|
13 |
-
"fusedLN": true,
|
14 |
-
"rope": true,
|
15 |
-
"pt_hw_seq_len": 16,
|
16 |
-
"intp_freq": true,
|
17 |
-
"naiveswiglu": true,
|
18 |
-
"subln": true
|
19 |
-
},
|
20 |
-
"text_cfg": {
|
21 |
-
"context_length": 77,
|
22 |
-
"vocab_size": 49408,
|
23 |
-
"width": 768,
|
24 |
-
"heads": 12,
|
25 |
-
"layers": 12,
|
26 |
-
"xattn": false,
|
27 |
-
"fusedLN": true
|
28 |
-
}
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 1024,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 64,
|
6 |
-
"width": 1792,
|
7 |
-
"head_width": 112,
|
8 |
-
"mlp_ratio": 8.571428571428571,
|
9 |
-
"patch_size": 14,
|
10 |
-
"eva_model_name": "eva-clip-4b-14-x",
|
11 |
-
"drop_path_rate": 0,
|
12 |
-
"xattn": true,
|
13 |
-
"postnorm": true,
|
14 |
-
"fusedLN": true
|
15 |
-
},
|
16 |
-
"text_cfg": {
|
17 |
-
"context_length": 77,
|
18 |
-
"vocab_size": 49408,
|
19 |
-
"width": 1280,
|
20 |
-
"heads": 20,
|
21 |
-
"layers": 32,
|
22 |
-
"xattn": false,
|
23 |
-
"fusedLN": true
|
24 |
-
}
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/model_configs/EVA02-CLIP-bigE-14.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"embed_dim": 1024,
|
3 |
-
"vision_cfg": {
|
4 |
-
"image_size": 224,
|
5 |
-
"layers": 64,
|
6 |
-
"width": 1792,
|
7 |
-
"head_width": 112,
|
8 |
-
"mlp_ratio": 8.571428571428571,
|
9 |
-
"patch_size": 14,
|
10 |
-
"eva_model_name": "eva-clip-4b-14-x",
|
11 |
-
"drop_path_rate": 0,
|
12 |
-
"xattn": true,
|
13 |
-
"postnorm": true,
|
14 |
-
"fusedLN": true
|
15 |
-
},
|
16 |
-
"text_cfg": {
|
17 |
-
"context_length": 77,
|
18 |
-
"vocab_size": 49408,
|
19 |
-
"width": 1024,
|
20 |
-
"heads": 16,
|
21 |
-
"layers": 24,
|
22 |
-
"xattn": false,
|
23 |
-
"fusedLN": true
|
24 |
-
}
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/modified_resnet.py
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
from collections import OrderedDict
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
from .utils import freeze_batch_norm_2d
|
8 |
-
|
9 |
-
|
10 |
-
class Bottleneck(nn.Module):
|
11 |
-
expansion = 4
|
12 |
-
|
13 |
-
def __init__(self, inplanes, planes, stride=1):
|
14 |
-
super().__init__()
|
15 |
-
|
16 |
-
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
-
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
-
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
-
self.act1 = nn.ReLU(inplace=True)
|
20 |
-
|
21 |
-
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
-
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
-
self.act2 = nn.ReLU(inplace=True)
|
24 |
-
|
25 |
-
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
-
|
27 |
-
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
-
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
-
self.act3 = nn.ReLU(inplace=True)
|
30 |
-
|
31 |
-
self.downsample = None
|
32 |
-
self.stride = stride
|
33 |
-
|
34 |
-
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
-
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
-
self.downsample = nn.Sequential(OrderedDict([
|
37 |
-
("-1", nn.AvgPool2d(stride)),
|
38 |
-
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
-
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
-
]))
|
41 |
-
|
42 |
-
def forward(self, x: torch.Tensor):
|
43 |
-
identity = x
|
44 |
-
|
45 |
-
out = self.act1(self.bn1(self.conv1(x)))
|
46 |
-
out = self.act2(self.bn2(self.conv2(out)))
|
47 |
-
out = self.avgpool(out)
|
48 |
-
out = self.bn3(self.conv3(out))
|
49 |
-
|
50 |
-
if self.downsample is not None:
|
51 |
-
identity = self.downsample(x)
|
52 |
-
|
53 |
-
out += identity
|
54 |
-
out = self.act3(out)
|
55 |
-
return out
|
56 |
-
|
57 |
-
|
58 |
-
class AttentionPool2d(nn.Module):
|
59 |
-
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
-
super().__init__()
|
61 |
-
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
-
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
-
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
-
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
-
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
-
self.num_heads = num_heads
|
67 |
-
|
68 |
-
def forward(self, x):
|
69 |
-
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
-
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
-
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
-
x, _ = F.multi_head_attention_forward(
|
73 |
-
query=x, key=x, value=x,
|
74 |
-
embed_dim_to_check=x.shape[-1],
|
75 |
-
num_heads=self.num_heads,
|
76 |
-
q_proj_weight=self.q_proj.weight,
|
77 |
-
k_proj_weight=self.k_proj.weight,
|
78 |
-
v_proj_weight=self.v_proj.weight,
|
79 |
-
in_proj_weight=None,
|
80 |
-
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
-
bias_k=None,
|
82 |
-
bias_v=None,
|
83 |
-
add_zero_attn=False,
|
84 |
-
dropout_p=0.,
|
85 |
-
out_proj_weight=self.c_proj.weight,
|
86 |
-
out_proj_bias=self.c_proj.bias,
|
87 |
-
use_separate_proj_weight=True,
|
88 |
-
training=self.training,
|
89 |
-
need_weights=False
|
90 |
-
)
|
91 |
-
|
92 |
-
return x[0]
|
93 |
-
|
94 |
-
|
95 |
-
class ModifiedResNet(nn.Module):
|
96 |
-
"""
|
97 |
-
A ResNet class that is similar to torchvision's but contains the following changes:
|
98 |
-
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
99 |
-
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
100 |
-
- The final pooling layer is a QKV attention instead of an average pool
|
101 |
-
"""
|
102 |
-
|
103 |
-
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
104 |
-
super().__init__()
|
105 |
-
self.output_dim = output_dim
|
106 |
-
self.image_size = image_size
|
107 |
-
|
108 |
-
# the 3-layer stem
|
109 |
-
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
110 |
-
self.bn1 = nn.BatchNorm2d(width // 2)
|
111 |
-
self.act1 = nn.ReLU(inplace=True)
|
112 |
-
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
113 |
-
self.bn2 = nn.BatchNorm2d(width // 2)
|
114 |
-
self.act2 = nn.ReLU(inplace=True)
|
115 |
-
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
116 |
-
self.bn3 = nn.BatchNorm2d(width)
|
117 |
-
self.act3 = nn.ReLU(inplace=True)
|
118 |
-
self.avgpool = nn.AvgPool2d(2)
|
119 |
-
|
120 |
-
# residual layers
|
121 |
-
self._inplanes = width # this is a *mutable* variable used during construction
|
122 |
-
self.layer1 = self._make_layer(width, layers[0])
|
123 |
-
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
124 |
-
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
125 |
-
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
126 |
-
|
127 |
-
embed_dim = width * 32 # the ResNet feature dimension
|
128 |
-
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
129 |
-
|
130 |
-
self.init_parameters()
|
131 |
-
|
132 |
-
def _make_layer(self, planes, blocks, stride=1):
|
133 |
-
layers = [Bottleneck(self._inplanes, planes, stride)]
|
134 |
-
|
135 |
-
self._inplanes = planes * Bottleneck.expansion
|
136 |
-
for _ in range(1, blocks):
|
137 |
-
layers.append(Bottleneck(self._inplanes, planes))
|
138 |
-
|
139 |
-
return nn.Sequential(*layers)
|
140 |
-
|
141 |
-
def init_parameters(self):
|
142 |
-
if self.attnpool is not None:
|
143 |
-
std = self.attnpool.c_proj.in_features ** -0.5
|
144 |
-
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
145 |
-
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
146 |
-
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
147 |
-
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
148 |
-
|
149 |
-
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
150 |
-
for name, param in resnet_block.named_parameters():
|
151 |
-
if name.endswith("bn3.weight"):
|
152 |
-
nn.init.zeros_(param)
|
153 |
-
|
154 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
155 |
-
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
156 |
-
for param in self.parameters():
|
157 |
-
param.requires_grad = False
|
158 |
-
if freeze_bn_stats:
|
159 |
-
freeze_batch_norm_2d(self)
|
160 |
-
|
161 |
-
@torch.jit.ignore
|
162 |
-
def set_grad_checkpointing(self, enable=True):
|
163 |
-
# FIXME support for non-transformer
|
164 |
-
pass
|
165 |
-
|
166 |
-
def stem(self, x):
|
167 |
-
x = self.act1(self.bn1(self.conv1(x)))
|
168 |
-
x = self.act2(self.bn2(self.conv2(x)))
|
169 |
-
x = self.act3(self.bn3(self.conv3(x)))
|
170 |
-
x = self.avgpool(x)
|
171 |
-
return x
|
172 |
-
|
173 |
-
def forward(self, x):
|
174 |
-
x = self.stem(x)
|
175 |
-
x = self.layer1(x)
|
176 |
-
x = self.layer2(x)
|
177 |
-
x = self.layer3(x)
|
178 |
-
x = self.layer4(x)
|
179 |
-
x = self.attnpool(x)
|
180 |
-
|
181 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/openai.py
DELETED
@@ -1,144 +0,0 @@
|
|
1 |
-
""" OpenAI pretrained model functions
|
2 |
-
|
3 |
-
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
-
"""
|
5 |
-
|
6 |
-
import os
|
7 |
-
import warnings
|
8 |
-
from typing import List, Optional, Union
|
9 |
-
|
10 |
-
import torch
|
11 |
-
|
12 |
-
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
|
13 |
-
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
|
14 |
-
|
15 |
-
__all__ = ["list_openai_models", "load_openai_model"]
|
16 |
-
|
17 |
-
|
18 |
-
def list_openai_models() -> List[str]:
|
19 |
-
"""Returns the names of available CLIP models"""
|
20 |
-
return list_pretrained_models_by_tag('openai')
|
21 |
-
|
22 |
-
|
23 |
-
def load_openai_model(
|
24 |
-
name: str,
|
25 |
-
precision: Optional[str] = None,
|
26 |
-
device: Optional[Union[str, torch.device]] = None,
|
27 |
-
jit: bool = True,
|
28 |
-
cache_dir: Optional[str] = None,
|
29 |
-
):
|
30 |
-
"""Load a CLIP model
|
31 |
-
|
32 |
-
Parameters
|
33 |
-
----------
|
34 |
-
name : str
|
35 |
-
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
36 |
-
precision: str
|
37 |
-
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
|
38 |
-
device : Union[str, torch.device]
|
39 |
-
The device to put the loaded model
|
40 |
-
jit : bool
|
41 |
-
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
42 |
-
cache_dir : Optional[str]
|
43 |
-
The directory to cache the downloaded model weights
|
44 |
-
|
45 |
-
Returns
|
46 |
-
-------
|
47 |
-
model : torch.nn.Module
|
48 |
-
The CLIP model
|
49 |
-
preprocess : Callable[[PIL.Image], torch.Tensor]
|
50 |
-
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
51 |
-
"""
|
52 |
-
if device is None:
|
53 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
-
if precision is None:
|
55 |
-
precision = 'fp32' if device == 'cpu' else 'fp16'
|
56 |
-
|
57 |
-
if get_pretrained_url(name, 'openai'):
|
58 |
-
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
|
59 |
-
elif os.path.isfile(name):
|
60 |
-
model_path = name
|
61 |
-
else:
|
62 |
-
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
|
63 |
-
|
64 |
-
try:
|
65 |
-
# loading JIT archive
|
66 |
-
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
67 |
-
state_dict = None
|
68 |
-
except RuntimeError:
|
69 |
-
# loading saved state dict
|
70 |
-
if jit:
|
71 |
-
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
72 |
-
jit = False
|
73 |
-
state_dict = torch.load(model_path, map_location="cpu")
|
74 |
-
|
75 |
-
if not jit:
|
76 |
-
# Build a non-jit model from the OpenAI jitted model state dict
|
77 |
-
cast_dtype = get_cast_dtype(precision)
|
78 |
-
try:
|
79 |
-
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
|
80 |
-
except KeyError:
|
81 |
-
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
82 |
-
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
|
83 |
-
|
84 |
-
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
|
85 |
-
model = model.to(device)
|
86 |
-
if precision.startswith('amp') or precision == 'fp32':
|
87 |
-
model.float()
|
88 |
-
elif precision == 'bf16':
|
89 |
-
convert_weights_to_lp(model, dtype=torch.bfloat16)
|
90 |
-
|
91 |
-
return model
|
92 |
-
|
93 |
-
# patch the device names
|
94 |
-
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
95 |
-
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
96 |
-
|
97 |
-
def patch_device(module):
|
98 |
-
try:
|
99 |
-
graphs = [module.graph] if hasattr(module, "graph") else []
|
100 |
-
except RuntimeError:
|
101 |
-
graphs = []
|
102 |
-
|
103 |
-
if hasattr(module, "forward1"):
|
104 |
-
graphs.append(module.forward1.graph)
|
105 |
-
|
106 |
-
for graph in graphs:
|
107 |
-
for node in graph.findAllNodes("prim::Constant"):
|
108 |
-
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
109 |
-
node.copyAttributes(device_node)
|
110 |
-
|
111 |
-
model.apply(patch_device)
|
112 |
-
patch_device(model.encode_image)
|
113 |
-
patch_device(model.encode_text)
|
114 |
-
|
115 |
-
# patch dtype to float32 (typically for CPU)
|
116 |
-
if precision == 'fp32':
|
117 |
-
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
118 |
-
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
119 |
-
float_node = float_input.node()
|
120 |
-
|
121 |
-
def patch_float(module):
|
122 |
-
try:
|
123 |
-
graphs = [module.graph] if hasattr(module, "graph") else []
|
124 |
-
except RuntimeError:
|
125 |
-
graphs = []
|
126 |
-
|
127 |
-
if hasattr(module, "forward1"):
|
128 |
-
graphs.append(module.forward1.graph)
|
129 |
-
|
130 |
-
for graph in graphs:
|
131 |
-
for node in graph.findAllNodes("aten::to"):
|
132 |
-
inputs = list(node.inputs())
|
133 |
-
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
134 |
-
if inputs[i].node()["value"] == 5:
|
135 |
-
inputs[i].node().copyAttributes(float_node)
|
136 |
-
|
137 |
-
model.apply(patch_float)
|
138 |
-
patch_float(model.encode_image)
|
139 |
-
patch_float(model.encode_text)
|
140 |
-
model.float()
|
141 |
-
|
142 |
-
# ensure image_size attr available at consistent location for both jit and non-jit
|
143 |
-
model.visual.image_size = model.input_resolution.item()
|
144 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/pretrained.py
DELETED
@@ -1,332 +0,0 @@
|
|
1 |
-
import hashlib
|
2 |
-
import os
|
3 |
-
import urllib
|
4 |
-
import warnings
|
5 |
-
from functools import partial
|
6 |
-
from typing import Dict, Union
|
7 |
-
|
8 |
-
from tqdm import tqdm
|
9 |
-
|
10 |
-
try:
|
11 |
-
from huggingface_hub import hf_hub_download
|
12 |
-
_has_hf_hub = True
|
13 |
-
except ImportError:
|
14 |
-
hf_hub_download = None
|
15 |
-
_has_hf_hub = False
|
16 |
-
|
17 |
-
|
18 |
-
def _pcfg(url='', hf_hub='', filename='', mean=None, std=None):
|
19 |
-
return dict(
|
20 |
-
url=url,
|
21 |
-
hf_hub=hf_hub,
|
22 |
-
mean=mean,
|
23 |
-
std=std,
|
24 |
-
)
|
25 |
-
|
26 |
-
_VITB32 = dict(
|
27 |
-
openai=_pcfg(
|
28 |
-
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
29 |
-
laion400m_e31=_pcfg(
|
30 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
31 |
-
laion400m_e32=_pcfg(
|
32 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
33 |
-
laion2b_e16=_pcfg(
|
34 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
|
35 |
-
laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
|
36 |
-
)
|
37 |
-
|
38 |
-
_VITB32_quickgelu = dict(
|
39 |
-
openai=_pcfg(
|
40 |
-
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
41 |
-
laion400m_e31=_pcfg(
|
42 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
43 |
-
laion400m_e32=_pcfg(
|
44 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
45 |
-
)
|
46 |
-
|
47 |
-
_VITB16 = dict(
|
48 |
-
openai=_pcfg(
|
49 |
-
"https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
|
50 |
-
laion400m_e31=_pcfg(
|
51 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
|
52 |
-
laion400m_e32=_pcfg(
|
53 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
|
54 |
-
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
|
55 |
-
)
|
56 |
-
|
57 |
-
_EVAB16 = dict(
|
58 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
59 |
-
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
60 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
61 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
62 |
-
)
|
63 |
-
|
64 |
-
_VITB16_PLUS_240 = dict(
|
65 |
-
laion400m_e31=_pcfg(
|
66 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
|
67 |
-
laion400m_e32=_pcfg(
|
68 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
|
69 |
-
)
|
70 |
-
|
71 |
-
_VITL14 = dict(
|
72 |
-
openai=_pcfg(
|
73 |
-
"https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
|
74 |
-
laion400m_e31=_pcfg(
|
75 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
|
76 |
-
laion400m_e32=_pcfg(
|
77 |
-
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
|
78 |
-
laion2b_s32b_b82k=_pcfg(
|
79 |
-
hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
|
80 |
-
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
81 |
-
)
|
82 |
-
|
83 |
-
_EVAL14 = dict(
|
84 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
85 |
-
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
86 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
87 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
88 |
-
)
|
89 |
-
|
90 |
-
_VITL14_336 = dict(
|
91 |
-
openai=_pcfg(
|
92 |
-
"https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
|
93 |
-
)
|
94 |
-
|
95 |
-
_EVAL14_336 = dict(
|
96 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
97 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
98 |
-
eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
99 |
-
eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
100 |
-
)
|
101 |
-
|
102 |
-
_VITH14 = dict(
|
103 |
-
laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
|
104 |
-
)
|
105 |
-
|
106 |
-
_VITg14 = dict(
|
107 |
-
laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
|
108 |
-
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
|
109 |
-
)
|
110 |
-
|
111 |
-
_EVAg14 = dict(
|
112 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
113 |
-
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
114 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
115 |
-
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
116 |
-
)
|
117 |
-
|
118 |
-
_EVAg14_PLUS = dict(
|
119 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
120 |
-
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
121 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
122 |
-
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
123 |
-
)
|
124 |
-
|
125 |
-
_VITbigG14 = dict(
|
126 |
-
laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
|
127 |
-
)
|
128 |
-
|
129 |
-
_EVAbigE14 = dict(
|
130 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
131 |
-
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
132 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
133 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
134 |
-
)
|
135 |
-
|
136 |
-
_EVAbigE14_PLUS = dict(
|
137 |
-
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
138 |
-
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
139 |
-
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
140 |
-
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
141 |
-
)
|
142 |
-
|
143 |
-
|
144 |
-
_PRETRAINED = {
|
145 |
-
# "ViT-B-32": _VITB32,
|
146 |
-
"OpenaiCLIP-B-32": _VITB32,
|
147 |
-
"OpenCLIP-B-32": _VITB32,
|
148 |
-
|
149 |
-
# "ViT-B-32-quickgelu": _VITB32_quickgelu,
|
150 |
-
"OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
151 |
-
"OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
152 |
-
|
153 |
-
# "ViT-B-16": _VITB16,
|
154 |
-
"OpenaiCLIP-B-16": _VITB16,
|
155 |
-
"OpenCLIP-B-16": _VITB16,
|
156 |
-
|
157 |
-
"EVA02-B-16": _EVAB16,
|
158 |
-
"EVA02-CLIP-B-16": _EVAB16,
|
159 |
-
|
160 |
-
# "ViT-B-16-plus-240": _VITB16_PLUS_240,
|
161 |
-
"OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
|
162 |
-
|
163 |
-
# "ViT-L-14": _VITL14,
|
164 |
-
"OpenaiCLIP-L-14": _VITL14,
|
165 |
-
"OpenCLIP-L-14": _VITL14,
|
166 |
-
|
167 |
-
"EVA02-L-14": _EVAL14,
|
168 |
-
"EVA02-CLIP-L-14": _EVAL14,
|
169 |
-
|
170 |
-
# "ViT-L-14-336": _VITL14_336,
|
171 |
-
"OpenaiCLIP-L-14-336": _VITL14_336,
|
172 |
-
|
173 |
-
"EVA02-CLIP-L-14-336": _EVAL14_336,
|
174 |
-
|
175 |
-
# "ViT-H-14": _VITH14,
|
176 |
-
# "ViT-g-14": _VITg14,
|
177 |
-
"OpenCLIP-H-14": _VITH14,
|
178 |
-
"OpenCLIP-g-14": _VITg14,
|
179 |
-
|
180 |
-
"EVA01-CLIP-g-14": _EVAg14,
|
181 |
-
"EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
|
182 |
-
|
183 |
-
# "ViT-bigG-14": _VITbigG14,
|
184 |
-
"OpenCLIP-bigG-14": _VITbigG14,
|
185 |
-
|
186 |
-
"EVA02-CLIP-bigE-14": _EVAbigE14,
|
187 |
-
"EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
|
188 |
-
}
|
189 |
-
|
190 |
-
|
191 |
-
def _clean_tag(tag: str):
|
192 |
-
# normalize pretrained tags
|
193 |
-
return tag.lower().replace('-', '_')
|
194 |
-
|
195 |
-
|
196 |
-
def list_pretrained(as_str: bool = False):
|
197 |
-
""" returns list of pretrained models
|
198 |
-
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
199 |
-
"""
|
200 |
-
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
|
201 |
-
|
202 |
-
|
203 |
-
def list_pretrained_models_by_tag(tag: str):
|
204 |
-
""" return all models having the specified pretrain tag """
|
205 |
-
models = []
|
206 |
-
tag = _clean_tag(tag)
|
207 |
-
for k in _PRETRAINED.keys():
|
208 |
-
if tag in _PRETRAINED[k]:
|
209 |
-
models.append(k)
|
210 |
-
return models
|
211 |
-
|
212 |
-
|
213 |
-
def list_pretrained_tags_by_model(model: str):
|
214 |
-
""" return all pretrain tags for the specified model architecture """
|
215 |
-
tags = []
|
216 |
-
if model in _PRETRAINED:
|
217 |
-
tags.extend(_PRETRAINED[model].keys())
|
218 |
-
return tags
|
219 |
-
|
220 |
-
|
221 |
-
def is_pretrained_cfg(model: str, tag: str):
|
222 |
-
if model not in _PRETRAINED:
|
223 |
-
return False
|
224 |
-
return _clean_tag(tag) in _PRETRAINED[model]
|
225 |
-
|
226 |
-
|
227 |
-
def get_pretrained_cfg(model: str, tag: str):
|
228 |
-
if model not in _PRETRAINED:
|
229 |
-
return {}
|
230 |
-
model_pretrained = _PRETRAINED[model]
|
231 |
-
return model_pretrained.get(_clean_tag(tag), {})
|
232 |
-
|
233 |
-
|
234 |
-
def get_pretrained_url(model: str, tag: str):
|
235 |
-
cfg = get_pretrained_cfg(model, _clean_tag(tag))
|
236 |
-
return cfg.get('url', '')
|
237 |
-
|
238 |
-
|
239 |
-
def download_pretrained_from_url(
|
240 |
-
url: str,
|
241 |
-
cache_dir: Union[str, None] = None,
|
242 |
-
):
|
243 |
-
if not cache_dir:
|
244 |
-
cache_dir = os.path.expanduser("~/.cache/clip")
|
245 |
-
os.makedirs(cache_dir, exist_ok=True)
|
246 |
-
filename = os.path.basename(url)
|
247 |
-
|
248 |
-
if 'openaipublic' in url:
|
249 |
-
expected_sha256 = url.split("/")[-2]
|
250 |
-
elif 'mlfoundations' in url:
|
251 |
-
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
|
252 |
-
else:
|
253 |
-
expected_sha256 = ''
|
254 |
-
|
255 |
-
download_target = os.path.join(cache_dir, filename)
|
256 |
-
|
257 |
-
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
258 |
-
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
259 |
-
|
260 |
-
if os.path.isfile(download_target):
|
261 |
-
if expected_sha256:
|
262 |
-
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
263 |
-
return download_target
|
264 |
-
else:
|
265 |
-
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
266 |
-
else:
|
267 |
-
return download_target
|
268 |
-
|
269 |
-
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
270 |
-
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
271 |
-
while True:
|
272 |
-
buffer = source.read(8192)
|
273 |
-
if not buffer:
|
274 |
-
break
|
275 |
-
|
276 |
-
output.write(buffer)
|
277 |
-
loop.update(len(buffer))
|
278 |
-
|
279 |
-
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
280 |
-
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
281 |
-
|
282 |
-
return download_target
|
283 |
-
|
284 |
-
|
285 |
-
def has_hf_hub(necessary=False):
|
286 |
-
if not _has_hf_hub and necessary:
|
287 |
-
# if no HF Hub module installed, and it is necessary to continue, raise error
|
288 |
-
raise RuntimeError(
|
289 |
-
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
290 |
-
return _has_hf_hub
|
291 |
-
|
292 |
-
|
293 |
-
def download_pretrained_from_hf(
|
294 |
-
model_id: str,
|
295 |
-
filename: str = 'open_clip_pytorch_model.bin',
|
296 |
-
revision=None,
|
297 |
-
cache_dir: Union[str, None] = None,
|
298 |
-
):
|
299 |
-
has_hf_hub(True)
|
300 |
-
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
|
301 |
-
return cached_file
|
302 |
-
|
303 |
-
|
304 |
-
def download_pretrained(
|
305 |
-
cfg: Dict,
|
306 |
-
force_hf_hub: bool = False,
|
307 |
-
cache_dir: Union[str, None] = None,
|
308 |
-
):
|
309 |
-
target = ''
|
310 |
-
if not cfg:
|
311 |
-
return target
|
312 |
-
|
313 |
-
download_url = cfg.get('url', '')
|
314 |
-
download_hf_hub = cfg.get('hf_hub', '')
|
315 |
-
if download_hf_hub and force_hf_hub:
|
316 |
-
# use HF hub even if url exists
|
317 |
-
download_url = ''
|
318 |
-
|
319 |
-
if download_url:
|
320 |
-
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
|
321 |
-
elif download_hf_hub:
|
322 |
-
has_hf_hub(True)
|
323 |
-
# we assume the hf_hub entries in pretrained config combine model_id + filename in
|
324 |
-
# 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
|
325 |
-
# use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
|
326 |
-
model_id, filename = os.path.split(download_hf_hub)
|
327 |
-
if filename:
|
328 |
-
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
|
329 |
-
else:
|
330 |
-
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
331 |
-
|
332 |
-
return target
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/rope.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
from math import pi
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from einops import rearrange, repeat
|
5 |
-
import logging
|
6 |
-
|
7 |
-
def broadcat(tensors, dim = -1):
|
8 |
-
num_tensors = len(tensors)
|
9 |
-
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
10 |
-
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
11 |
-
shape_len = list(shape_lens)[0]
|
12 |
-
dim = (dim + shape_len) if dim < 0 else dim
|
13 |
-
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
14 |
-
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
15 |
-
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
16 |
-
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
17 |
-
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
18 |
-
expanded_dims.insert(dim, (dim, dims[dim]))
|
19 |
-
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
20 |
-
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
21 |
-
return torch.cat(tensors, dim = dim)
|
22 |
-
|
23 |
-
def rotate_half(x):
|
24 |
-
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
25 |
-
x1, x2 = x.unbind(dim = -1)
|
26 |
-
x = torch.stack((-x2, x1), dim = -1)
|
27 |
-
return rearrange(x, '... d r -> ... (d r)')
|
28 |
-
|
29 |
-
|
30 |
-
class VisionRotaryEmbedding(nn.Module):
|
31 |
-
def __init__(
|
32 |
-
self,
|
33 |
-
dim,
|
34 |
-
pt_seq_len,
|
35 |
-
ft_seq_len=None,
|
36 |
-
custom_freqs = None,
|
37 |
-
freqs_for = 'lang',
|
38 |
-
theta = 10000,
|
39 |
-
max_freq = 10,
|
40 |
-
num_freqs = 1,
|
41 |
-
):
|
42 |
-
super().__init__()
|
43 |
-
if custom_freqs:
|
44 |
-
freqs = custom_freqs
|
45 |
-
elif freqs_for == 'lang':
|
46 |
-
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
47 |
-
elif freqs_for == 'pixel':
|
48 |
-
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
49 |
-
elif freqs_for == 'constant':
|
50 |
-
freqs = torch.ones(num_freqs).float()
|
51 |
-
else:
|
52 |
-
raise ValueError(f'unknown modality {freqs_for}')
|
53 |
-
|
54 |
-
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
55 |
-
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
56 |
-
|
57 |
-
freqs_h = torch.einsum('..., f -> ... f', t, freqs)
|
58 |
-
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
|
59 |
-
|
60 |
-
freqs_w = torch.einsum('..., f -> ... f', t, freqs)
|
61 |
-
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
|
62 |
-
|
63 |
-
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1)
|
64 |
-
|
65 |
-
self.register_buffer("freqs_cos", freqs.cos())
|
66 |
-
self.register_buffer("freqs_sin", freqs.sin())
|
67 |
-
|
68 |
-
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
69 |
-
|
70 |
-
def forward(self, t, start_index = 0):
|
71 |
-
rot_dim = self.freqs_cos.shape[-1]
|
72 |
-
end_index = start_index + rot_dim
|
73 |
-
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
|
74 |
-
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
75 |
-
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
|
76 |
-
|
77 |
-
return torch.cat((t_left, t, t_right), dim = -1)
|
78 |
-
|
79 |
-
class VisionRotaryEmbeddingFast(nn.Module):
|
80 |
-
def __init__(
|
81 |
-
self,
|
82 |
-
dim,
|
83 |
-
pt_seq_len,
|
84 |
-
ft_seq_len=None,
|
85 |
-
custom_freqs = None,
|
86 |
-
freqs_for = 'lang',
|
87 |
-
theta = 10000,
|
88 |
-
max_freq = 10,
|
89 |
-
num_freqs = 1,
|
90 |
-
patch_dropout = 0.
|
91 |
-
):
|
92 |
-
super().__init__()
|
93 |
-
if custom_freqs:
|
94 |
-
freqs = custom_freqs
|
95 |
-
elif freqs_for == 'lang':
|
96 |
-
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
97 |
-
elif freqs_for == 'pixel':
|
98 |
-
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
99 |
-
elif freqs_for == 'constant':
|
100 |
-
freqs = torch.ones(num_freqs).float()
|
101 |
-
else:
|
102 |
-
raise ValueError(f'unknown modality {freqs_for}')
|
103 |
-
|
104 |
-
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
105 |
-
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
106 |
-
|
107 |
-
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
108 |
-
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
109 |
-
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
110 |
-
|
111 |
-
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
112 |
-
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
113 |
-
|
114 |
-
self.patch_dropout = patch_dropout
|
115 |
-
|
116 |
-
self.register_buffer("freqs_cos", freqs_cos)
|
117 |
-
self.register_buffer("freqs_sin", freqs_sin)
|
118 |
-
|
119 |
-
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
120 |
-
|
121 |
-
def forward(self, t, patch_indices_keep=None):
|
122 |
-
if patch_indices_keep is not None:
|
123 |
-
batch = t.size()[0]
|
124 |
-
batch_indices = torch.arange(batch)
|
125 |
-
batch_indices = batch_indices[..., None]
|
126 |
-
|
127 |
-
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
128 |
-
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
129 |
-
|
130 |
-
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
131 |
-
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
132 |
-
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
133 |
-
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
134 |
-
|
135 |
-
return t * freqs_cos + rotate_half(t) * freqs_sin
|
136 |
-
|
137 |
-
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/timm_model.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
""" timm model adapter
|
2 |
-
|
3 |
-
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
|
4 |
-
"""
|
5 |
-
import logging
|
6 |
-
from collections import OrderedDict
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
|
11 |
-
try:
|
12 |
-
import timm
|
13 |
-
from timm.models.layers import Mlp, to_2tuple
|
14 |
-
try:
|
15 |
-
# old timm imports < 0.8.1
|
16 |
-
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
17 |
-
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
|
18 |
-
except ImportError:
|
19 |
-
# new timm imports >= 0.8.1
|
20 |
-
from timm.layers import RotAttentionPool2d
|
21 |
-
from timm.layers import AttentionPool2d as AbsAttentionPool2d
|
22 |
-
except ImportError:
|
23 |
-
timm = None
|
24 |
-
|
25 |
-
from .utils import freeze_batch_norm_2d
|
26 |
-
|
27 |
-
|
28 |
-
class TimmModel(nn.Module):
|
29 |
-
""" timm model adapter
|
30 |
-
# FIXME this adapter is a work in progress, may change in ways that break weight compat
|
31 |
-
"""
|
32 |
-
|
33 |
-
def __init__(
|
34 |
-
self,
|
35 |
-
model_name,
|
36 |
-
embed_dim,
|
37 |
-
image_size=224,
|
38 |
-
pool='avg',
|
39 |
-
proj='linear',
|
40 |
-
proj_bias=False,
|
41 |
-
drop=0.,
|
42 |
-
pretrained=False):
|
43 |
-
super().__init__()
|
44 |
-
if timm is None:
|
45 |
-
raise RuntimeError("Please `pip install timm` to use timm models.")
|
46 |
-
|
47 |
-
self.image_size = to_2tuple(image_size)
|
48 |
-
self.trunk = timm.create_model(model_name, pretrained=pretrained)
|
49 |
-
feat_size = self.trunk.default_cfg.get('pool_size', None)
|
50 |
-
feature_ndim = 1 if not feat_size else 2
|
51 |
-
if pool in ('abs_attn', 'rot_attn'):
|
52 |
-
assert feature_ndim == 2
|
53 |
-
# if attn pooling used, remove both classifier and default pool
|
54 |
-
self.trunk.reset_classifier(0, global_pool='')
|
55 |
-
else:
|
56 |
-
# reset global pool if pool config set, otherwise leave as network default
|
57 |
-
reset_kwargs = dict(global_pool=pool) if pool else {}
|
58 |
-
self.trunk.reset_classifier(0, **reset_kwargs)
|
59 |
-
prev_chs = self.trunk.num_features
|
60 |
-
|
61 |
-
head_layers = OrderedDict()
|
62 |
-
if pool == 'abs_attn':
|
63 |
-
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
|
64 |
-
prev_chs = embed_dim
|
65 |
-
elif pool == 'rot_attn':
|
66 |
-
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
67 |
-
prev_chs = embed_dim
|
68 |
-
else:
|
69 |
-
assert proj, 'projection layer needed if non-attention pooling is used.'
|
70 |
-
|
71 |
-
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
72 |
-
if proj == 'linear':
|
73 |
-
head_layers['drop'] = nn.Dropout(drop)
|
74 |
-
head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
|
75 |
-
elif proj == 'mlp':
|
76 |
-
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias))
|
77 |
-
|
78 |
-
self.head = nn.Sequential(head_layers)
|
79 |
-
|
80 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
81 |
-
""" lock modules
|
82 |
-
Args:
|
83 |
-
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
84 |
-
"""
|
85 |
-
if not unlocked_groups:
|
86 |
-
# lock full model
|
87 |
-
for param in self.trunk.parameters():
|
88 |
-
param.requires_grad = False
|
89 |
-
if freeze_bn_stats:
|
90 |
-
freeze_batch_norm_2d(self.trunk)
|
91 |
-
else:
|
92 |
-
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
93 |
-
try:
|
94 |
-
# FIXME import here until API stable and in an official release
|
95 |
-
from timm.models.helpers import group_parameters, group_modules
|
96 |
-
except ImportError:
|
97 |
-
raise RuntimeError(
|
98 |
-
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
|
99 |
-
matcher = self.trunk.group_matcher()
|
100 |
-
gparams = group_parameters(self.trunk, matcher)
|
101 |
-
max_layer_id = max(gparams.keys())
|
102 |
-
max_layer_id = max_layer_id - unlocked_groups
|
103 |
-
for group_idx in range(max_layer_id + 1):
|
104 |
-
group = gparams[group_idx]
|
105 |
-
for param in group:
|
106 |
-
self.trunk.get_parameter(param).requires_grad = False
|
107 |
-
if freeze_bn_stats:
|
108 |
-
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
109 |
-
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
110 |
-
freeze_batch_norm_2d(self.trunk, gmodules)
|
111 |
-
|
112 |
-
@torch.jit.ignore
|
113 |
-
def set_grad_checkpointing(self, enable=True):
|
114 |
-
try:
|
115 |
-
self.trunk.set_grad_checkpointing(enable)
|
116 |
-
except Exception as e:
|
117 |
-
logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
|
118 |
-
|
119 |
-
def forward(self, x):
|
120 |
-
x = self.trunk(x)
|
121 |
-
x = self.head(x)
|
122 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/tokenizer.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
""" CLIP tokenizer
|
2 |
-
|
3 |
-
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
-
"""
|
5 |
-
import gzip
|
6 |
-
import html
|
7 |
-
import os
|
8 |
-
from functools import lru_cache
|
9 |
-
from typing import Union, List
|
10 |
-
|
11 |
-
import ftfy
|
12 |
-
import regex as re
|
13 |
-
import torch
|
14 |
-
|
15 |
-
# https://stackoverflow.com/q/62691279
|
16 |
-
import os
|
17 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
18 |
-
|
19 |
-
|
20 |
-
@lru_cache()
|
21 |
-
def default_bpe():
|
22 |
-
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
23 |
-
|
24 |
-
|
25 |
-
@lru_cache()
|
26 |
-
def bytes_to_unicode():
|
27 |
-
"""
|
28 |
-
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
29 |
-
The reversible bpe codes work on unicode strings.
|
30 |
-
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
31 |
-
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
32 |
-
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
33 |
-
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
34 |
-
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
35 |
-
"""
|
36 |
-
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
37 |
-
cs = bs[:]
|
38 |
-
n = 0
|
39 |
-
for b in range(2**8):
|
40 |
-
if b not in bs:
|
41 |
-
bs.append(b)
|
42 |
-
cs.append(2**8+n)
|
43 |
-
n += 1
|
44 |
-
cs = [chr(n) for n in cs]
|
45 |
-
return dict(zip(bs, cs))
|
46 |
-
|
47 |
-
|
48 |
-
def get_pairs(word):
|
49 |
-
"""Return set of symbol pairs in a word.
|
50 |
-
Word is represented as tuple of symbols (symbols being variable-length strings).
|
51 |
-
"""
|
52 |
-
pairs = set()
|
53 |
-
prev_char = word[0]
|
54 |
-
for char in word[1:]:
|
55 |
-
pairs.add((prev_char, char))
|
56 |
-
prev_char = char
|
57 |
-
return pairs
|
58 |
-
|
59 |
-
|
60 |
-
def basic_clean(text):
|
61 |
-
text = ftfy.fix_text(text)
|
62 |
-
text = html.unescape(html.unescape(text))
|
63 |
-
return text.strip()
|
64 |
-
|
65 |
-
|
66 |
-
def whitespace_clean(text):
|
67 |
-
text = re.sub(r'\s+', ' ', text)
|
68 |
-
text = text.strip()
|
69 |
-
return text
|
70 |
-
|
71 |
-
|
72 |
-
class SimpleTokenizer(object):
|
73 |
-
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
74 |
-
self.byte_encoder = bytes_to_unicode()
|
75 |
-
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
76 |
-
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
77 |
-
merges = merges[1:49152-256-2+1]
|
78 |
-
merges = [tuple(merge.split()) for merge in merges]
|
79 |
-
vocab = list(bytes_to_unicode().values())
|
80 |
-
vocab = vocab + [v+'</w>' for v in vocab]
|
81 |
-
for merge in merges:
|
82 |
-
vocab.append(''.join(merge))
|
83 |
-
if not special_tokens:
|
84 |
-
special_tokens = ['<start_of_text>', '<end_of_text>']
|
85 |
-
else:
|
86 |
-
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
|
87 |
-
vocab.extend(special_tokens)
|
88 |
-
self.encoder = dict(zip(vocab, range(len(vocab))))
|
89 |
-
self.decoder = {v: k for k, v in self.encoder.items()}
|
90 |
-
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
91 |
-
self.cache = {t:t for t in special_tokens}
|
92 |
-
special = "|".join(special_tokens)
|
93 |
-
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
94 |
-
|
95 |
-
self.vocab_size = len(self.encoder)
|
96 |
-
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
97 |
-
|
98 |
-
def bpe(self, token):
|
99 |
-
if token in self.cache:
|
100 |
-
return self.cache[token]
|
101 |
-
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
102 |
-
pairs = get_pairs(word)
|
103 |
-
|
104 |
-
if not pairs:
|
105 |
-
return token+'</w>'
|
106 |
-
|
107 |
-
while True:
|
108 |
-
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
109 |
-
if bigram not in self.bpe_ranks:
|
110 |
-
break
|
111 |
-
first, second = bigram
|
112 |
-
new_word = []
|
113 |
-
i = 0
|
114 |
-
while i < len(word):
|
115 |
-
try:
|
116 |
-
j = word.index(first, i)
|
117 |
-
new_word.extend(word[i:j])
|
118 |
-
i = j
|
119 |
-
except:
|
120 |
-
new_word.extend(word[i:])
|
121 |
-
break
|
122 |
-
|
123 |
-
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
124 |
-
new_word.append(first+second)
|
125 |
-
i += 2
|
126 |
-
else:
|
127 |
-
new_word.append(word[i])
|
128 |
-
i += 1
|
129 |
-
new_word = tuple(new_word)
|
130 |
-
word = new_word
|
131 |
-
if len(word) == 1:
|
132 |
-
break
|
133 |
-
else:
|
134 |
-
pairs = get_pairs(word)
|
135 |
-
word = ' '.join(word)
|
136 |
-
self.cache[token] = word
|
137 |
-
return word
|
138 |
-
|
139 |
-
def encode(self, text):
|
140 |
-
bpe_tokens = []
|
141 |
-
text = whitespace_clean(basic_clean(text)).lower()
|
142 |
-
for token in re.findall(self.pat, text):
|
143 |
-
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
144 |
-
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
145 |
-
return bpe_tokens
|
146 |
-
|
147 |
-
def decode(self, tokens):
|
148 |
-
text = ''.join([self.decoder[token] for token in tokens])
|
149 |
-
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
150 |
-
return text
|
151 |
-
|
152 |
-
|
153 |
-
_tokenizer = SimpleTokenizer()
|
154 |
-
|
155 |
-
|
156 |
-
def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
|
157 |
-
"""
|
158 |
-
Returns the tokenized representation of given input string(s)
|
159 |
-
|
160 |
-
Parameters
|
161 |
-
----------
|
162 |
-
texts : Union[str, List[str]]
|
163 |
-
An input string or a list of input strings to tokenize
|
164 |
-
context_length : int
|
165 |
-
The context length to use; all CLIP models use 77 as the context length
|
166 |
-
|
167 |
-
Returns
|
168 |
-
-------
|
169 |
-
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
170 |
-
"""
|
171 |
-
if isinstance(texts, str):
|
172 |
-
texts = [texts]
|
173 |
-
|
174 |
-
sot_token = _tokenizer.encoder["<start_of_text>"]
|
175 |
-
eot_token = _tokenizer.encoder["<end_of_text>"]
|
176 |
-
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
177 |
-
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
178 |
-
|
179 |
-
for i, tokens in enumerate(all_tokens):
|
180 |
-
if len(tokens) > context_length:
|
181 |
-
tokens = tokens[:context_length] # Truncate
|
182 |
-
tokens[-1] = eot_token
|
183 |
-
result[i, :len(tokens)] = torch.tensor(tokens)
|
184 |
-
|
185 |
-
return result
|
186 |
-
|
187 |
-
|
188 |
-
class HFTokenizer:
|
189 |
-
"HuggingFace tokenizer wrapper"
|
190 |
-
def __init__(self, tokenizer_name:str):
|
191 |
-
from transformers import AutoTokenizer
|
192 |
-
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
193 |
-
|
194 |
-
def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor:
|
195 |
-
# same cleaning as for default tokenizer, except lowercasing
|
196 |
-
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
197 |
-
if isinstance(texts, str):
|
198 |
-
texts = [texts]
|
199 |
-
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
200 |
-
input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids
|
201 |
-
return input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/transform.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
from typing import Optional, Sequence, Tuple
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torchvision.transforms.functional as F
|
6 |
-
|
7 |
-
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
|
8 |
-
CenterCrop
|
9 |
-
|
10 |
-
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
11 |
-
|
12 |
-
|
13 |
-
class ResizeMaxSize(nn.Module):
|
14 |
-
|
15 |
-
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
|
16 |
-
super().__init__()
|
17 |
-
if not isinstance(max_size, int):
|
18 |
-
raise TypeError(f"Size should be int. Got {type(max_size)}")
|
19 |
-
self.max_size = max_size
|
20 |
-
self.interpolation = interpolation
|
21 |
-
self.fn = min if fn == 'min' else min
|
22 |
-
self.fill = fill
|
23 |
-
|
24 |
-
def forward(self, img):
|
25 |
-
if isinstance(img, torch.Tensor):
|
26 |
-
height, width = img.shape[:2]
|
27 |
-
else:
|
28 |
-
width, height = img.size
|
29 |
-
scale = self.max_size / float(max(height, width))
|
30 |
-
if scale != 1.0:
|
31 |
-
new_size = tuple(round(dim * scale) for dim in (height, width))
|
32 |
-
img = F.resize(img, new_size, self.interpolation)
|
33 |
-
pad_h = self.max_size - new_size[0]
|
34 |
-
pad_w = self.max_size - new_size[1]
|
35 |
-
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
|
36 |
-
return img
|
37 |
-
|
38 |
-
|
39 |
-
def _convert_to_rgb(image):
|
40 |
-
return image.convert('RGB')
|
41 |
-
|
42 |
-
|
43 |
-
# class CatGen(nn.Module):
|
44 |
-
# def __init__(self, num=4):
|
45 |
-
# self.num = num
|
46 |
-
# def mixgen_batch(image, text):
|
47 |
-
# batch_size = image.shape[0]
|
48 |
-
# index = np.random.permutation(batch_size)
|
49 |
-
|
50 |
-
# cat_images = []
|
51 |
-
# for i in range(batch_size):
|
52 |
-
# # image mixup
|
53 |
-
# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:]
|
54 |
-
# # text concat
|
55 |
-
# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0]
|
56 |
-
# text = torch.stack(text)
|
57 |
-
# return image, text
|
58 |
-
|
59 |
-
|
60 |
-
def image_transform(
|
61 |
-
image_size: int,
|
62 |
-
is_train: bool,
|
63 |
-
mean: Optional[Tuple[float, ...]] = None,
|
64 |
-
std: Optional[Tuple[float, ...]] = None,
|
65 |
-
resize_longest_max: bool = False,
|
66 |
-
fill_color: int = 0,
|
67 |
-
):
|
68 |
-
mean = mean or OPENAI_DATASET_MEAN
|
69 |
-
if not isinstance(mean, (list, tuple)):
|
70 |
-
mean = (mean,) * 3
|
71 |
-
|
72 |
-
std = std or OPENAI_DATASET_STD
|
73 |
-
if not isinstance(std, (list, tuple)):
|
74 |
-
std = (std,) * 3
|
75 |
-
|
76 |
-
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
|
77 |
-
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
|
78 |
-
image_size = image_size[0]
|
79 |
-
|
80 |
-
normalize = Normalize(mean=mean, std=std)
|
81 |
-
if is_train:
|
82 |
-
return Compose([
|
83 |
-
RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC),
|
84 |
-
_convert_to_rgb,
|
85 |
-
ToTensor(),
|
86 |
-
normalize,
|
87 |
-
])
|
88 |
-
else:
|
89 |
-
if resize_longest_max:
|
90 |
-
transforms = [
|
91 |
-
ResizeMaxSize(image_size, fill=fill_color)
|
92 |
-
]
|
93 |
-
else:
|
94 |
-
transforms = [
|
95 |
-
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
96 |
-
CenterCrop(image_size),
|
97 |
-
]
|
98 |
-
transforms.extend([
|
99 |
-
_convert_to_rgb,
|
100 |
-
ToTensor(),
|
101 |
-
normalize,
|
102 |
-
])
|
103 |
-
return Compose(transforms)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/transformer.py
DELETED
@@ -1,737 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import logging
|
3 |
-
from collections import OrderedDict
|
4 |
-
import math
|
5 |
-
from typing import Callable, Optional, Sequence
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
from torch import nn
|
9 |
-
from torch.nn import functional as F
|
10 |
-
|
11 |
-
try:
|
12 |
-
from timm.models.layers import trunc_normal_
|
13 |
-
except:
|
14 |
-
from timm.layers import trunc_normal_
|
15 |
-
|
16 |
-
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
-
from .utils import to_2tuple
|
18 |
-
|
19 |
-
if os.getenv('ENV_TYPE') == 'deepspeed':
|
20 |
-
try:
|
21 |
-
import deepspeed
|
22 |
-
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
23 |
-
except:
|
24 |
-
print("Please 'pip install deepspeed'")
|
25 |
-
deepspeed = None
|
26 |
-
from torch.utils.checkpoint import checkpoint
|
27 |
-
else:
|
28 |
-
from torch.utils.checkpoint import checkpoint
|
29 |
-
|
30 |
-
try:
|
31 |
-
import xformers.ops as xops
|
32 |
-
except ImportError:
|
33 |
-
xops = None
|
34 |
-
print("Please 'pip install xformers'")
|
35 |
-
|
36 |
-
class LayerNormFp32(nn.LayerNorm):
|
37 |
-
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
38 |
-
def __init__(self, *args, **kwargs):
|
39 |
-
super().__init__(*args, **kwargs)
|
40 |
-
|
41 |
-
def forward(self, x: torch.Tensor):
|
42 |
-
output = F.layer_norm(
|
43 |
-
x.float(),
|
44 |
-
self.normalized_shape,
|
45 |
-
self.weight.float() if self.weight is not None else None,
|
46 |
-
self.bias.float() if self.bias is not None else None,
|
47 |
-
self.eps,
|
48 |
-
)
|
49 |
-
return output.type_as(x)
|
50 |
-
|
51 |
-
|
52 |
-
class LayerNorm(nn.LayerNorm):
|
53 |
-
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
54 |
-
|
55 |
-
def forward(self, x: torch.Tensor):
|
56 |
-
orig_type = x.dtype
|
57 |
-
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
58 |
-
return x.to(orig_type)
|
59 |
-
|
60 |
-
class QuickGELU(nn.Module):
|
61 |
-
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
62 |
-
def forward(self, x: torch.Tensor):
|
63 |
-
return x * torch.sigmoid(1.702 * x)
|
64 |
-
|
65 |
-
|
66 |
-
class LayerScale(nn.Module):
|
67 |
-
def __init__(self, dim, init_values=1e-5, inplace=False):
|
68 |
-
super().__init__()
|
69 |
-
self.inplace = inplace
|
70 |
-
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
71 |
-
|
72 |
-
def forward(self, x):
|
73 |
-
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
74 |
-
|
75 |
-
class PatchDropout(nn.Module):
|
76 |
-
"""
|
77 |
-
https://arxiv.org/abs/2212.00794
|
78 |
-
"""
|
79 |
-
|
80 |
-
def __init__(self, prob, exclude_first_token=True):
|
81 |
-
super().__init__()
|
82 |
-
assert 0 <= prob < 1.
|
83 |
-
self.prob = prob
|
84 |
-
self.exclude_first_token = exclude_first_token # exclude CLS token
|
85 |
-
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
86 |
-
|
87 |
-
def forward(self, x):
|
88 |
-
if not self.training or self.prob == 0.:
|
89 |
-
return x
|
90 |
-
|
91 |
-
if self.exclude_first_token:
|
92 |
-
cls_tokens, x = x[:, :1], x[:, 1:]
|
93 |
-
else:
|
94 |
-
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
95 |
-
|
96 |
-
batch = x.size()[0]
|
97 |
-
num_tokens = x.size()[1]
|
98 |
-
|
99 |
-
batch_indices = torch.arange(batch)
|
100 |
-
batch_indices = batch_indices[..., None]
|
101 |
-
|
102 |
-
keep_prob = 1 - self.prob
|
103 |
-
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
104 |
-
|
105 |
-
rand = torch.randn(batch, num_tokens)
|
106 |
-
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
107 |
-
|
108 |
-
x = x[batch_indices, patch_indices_keep]
|
109 |
-
|
110 |
-
if self.exclude_first_token:
|
111 |
-
x = torch.cat((cls_tokens, x), dim=1)
|
112 |
-
|
113 |
-
if self.training and os.getenv('RoPE') == '1':
|
114 |
-
return x, patch_indices_keep
|
115 |
-
|
116 |
-
return x
|
117 |
-
|
118 |
-
|
119 |
-
def _in_projection_packed(
|
120 |
-
q: torch.Tensor,
|
121 |
-
k: torch.Tensor,
|
122 |
-
v: torch.Tensor,
|
123 |
-
w: torch.Tensor,
|
124 |
-
b: Optional[torch.Tensor] = None,
|
125 |
-
):
|
126 |
-
"""
|
127 |
-
https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726
|
128 |
-
"""
|
129 |
-
E = q.size(-1)
|
130 |
-
if k is v:
|
131 |
-
if q is k:
|
132 |
-
# self-attention
|
133 |
-
return F.linear(q, w, b).chunk(3, dim=-1)
|
134 |
-
else:
|
135 |
-
# encoder-decoder attention
|
136 |
-
w_q, w_kv = w.split([E, E * 2])
|
137 |
-
if b is None:
|
138 |
-
b_q = b_kv = None
|
139 |
-
else:
|
140 |
-
b_q, b_kv = b.split([E, E * 2])
|
141 |
-
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
|
142 |
-
else:
|
143 |
-
w_q, w_k, w_v = w.chunk(3)
|
144 |
-
if b is None:
|
145 |
-
b_q = b_k = b_v = None
|
146 |
-
else:
|
147 |
-
b_q, b_k, b_v = b.chunk(3)
|
148 |
-
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
|
149 |
-
|
150 |
-
class Attention(nn.Module):
|
151 |
-
def __init__(
|
152 |
-
self,
|
153 |
-
dim,
|
154 |
-
num_heads=8,
|
155 |
-
qkv_bias=True,
|
156 |
-
scaled_cosine=False,
|
157 |
-
scale_heads=False,
|
158 |
-
logit_scale_max=math.log(1. / 0.01),
|
159 |
-
attn_drop=0.,
|
160 |
-
proj_drop=0.,
|
161 |
-
xattn=False,
|
162 |
-
rope=False
|
163 |
-
):
|
164 |
-
super().__init__()
|
165 |
-
self.scaled_cosine = scaled_cosine
|
166 |
-
self.scale_heads = scale_heads
|
167 |
-
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
168 |
-
self.num_heads = num_heads
|
169 |
-
self.head_dim = dim // num_heads
|
170 |
-
self.scale = self.head_dim ** -0.5
|
171 |
-
self.logit_scale_max = logit_scale_max
|
172 |
-
|
173 |
-
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
174 |
-
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
175 |
-
if qkv_bias:
|
176 |
-
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
177 |
-
else:
|
178 |
-
self.in_proj_bias = None
|
179 |
-
|
180 |
-
if self.scaled_cosine:
|
181 |
-
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
182 |
-
else:
|
183 |
-
self.logit_scale = None
|
184 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
185 |
-
if self.scale_heads:
|
186 |
-
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
187 |
-
else:
|
188 |
-
self.head_scale = None
|
189 |
-
self.out_proj = nn.Linear(dim, dim)
|
190 |
-
self.out_drop = nn.Dropout(proj_drop)
|
191 |
-
self.xattn = xattn
|
192 |
-
self.xattn_drop = attn_drop
|
193 |
-
self.rope = rope
|
194 |
-
|
195 |
-
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
|
196 |
-
L, N, C = x.shape
|
197 |
-
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
|
198 |
-
if self.xattn:
|
199 |
-
q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
200 |
-
k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
201 |
-
v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
202 |
-
|
203 |
-
x = xops.memory_efficient_attention(
|
204 |
-
q, k, v,
|
205 |
-
p=self.xattn_drop,
|
206 |
-
scale=self.scale if self.logit_scale is None else None,
|
207 |
-
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None,
|
208 |
-
)
|
209 |
-
else:
|
210 |
-
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
211 |
-
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
212 |
-
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
213 |
-
|
214 |
-
if self.logit_scale is not None:
|
215 |
-
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
216 |
-
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
217 |
-
attn = attn.view(N, self.num_heads, L, L) * logit_scale
|
218 |
-
attn = attn.view(-1, L, L)
|
219 |
-
else:
|
220 |
-
q = q * self.scale
|
221 |
-
attn = torch.bmm(q, k.transpose(-1, -2))
|
222 |
-
|
223 |
-
if attn_mask is not None:
|
224 |
-
if attn_mask.dtype == torch.bool:
|
225 |
-
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
226 |
-
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
227 |
-
attn_mask = new_attn_mask
|
228 |
-
attn += attn_mask
|
229 |
-
|
230 |
-
attn = attn.softmax(dim=-1)
|
231 |
-
attn = self.attn_drop(attn)
|
232 |
-
|
233 |
-
x = torch.bmm(attn, v)
|
234 |
-
|
235 |
-
if self.head_scale is not None:
|
236 |
-
x = x.view(N, self.num_heads, L, C) * self.head_scale
|
237 |
-
x = x.view(-1, L, C)
|
238 |
-
x = x.transpose(0, 1).reshape(L, N, C)
|
239 |
-
x = self.out_proj(x)
|
240 |
-
x = self.out_drop(x)
|
241 |
-
return x
|
242 |
-
|
243 |
-
class CustomAttention(nn.Module):
|
244 |
-
def __init__(
|
245 |
-
self,
|
246 |
-
dim,
|
247 |
-
num_heads=8,
|
248 |
-
qkv_bias=True,
|
249 |
-
scaled_cosine=True,
|
250 |
-
scale_heads=False,
|
251 |
-
logit_scale_max=math.log(1. / 0.01),
|
252 |
-
attn_drop=0.,
|
253 |
-
proj_drop=0.,
|
254 |
-
xattn=False
|
255 |
-
):
|
256 |
-
super().__init__()
|
257 |
-
self.scaled_cosine = scaled_cosine
|
258 |
-
self.scale_heads = scale_heads
|
259 |
-
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
260 |
-
self.num_heads = num_heads
|
261 |
-
self.head_dim = dim // num_heads
|
262 |
-
self.scale = self.head_dim ** -0.5
|
263 |
-
self.logit_scale_max = logit_scale_max
|
264 |
-
|
265 |
-
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
266 |
-
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
267 |
-
if qkv_bias:
|
268 |
-
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
269 |
-
else:
|
270 |
-
self.in_proj_bias = None
|
271 |
-
|
272 |
-
if self.scaled_cosine:
|
273 |
-
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
274 |
-
else:
|
275 |
-
self.logit_scale = None
|
276 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
277 |
-
if self.scale_heads:
|
278 |
-
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
279 |
-
else:
|
280 |
-
self.head_scale = None
|
281 |
-
self.out_proj = nn.Linear(dim, dim)
|
282 |
-
self.out_drop = nn.Dropout(proj_drop)
|
283 |
-
self.xattn = xattn
|
284 |
-
self.xattn_drop = attn_drop
|
285 |
-
|
286 |
-
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
287 |
-
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
|
288 |
-
N_q, B_q, C_q = q.shape
|
289 |
-
N_k, B_k, C_k = k.shape
|
290 |
-
N_v, B_v, C_v = v.shape
|
291 |
-
if self.xattn:
|
292 |
-
# B, N, C -> B, N, num_heads, C
|
293 |
-
q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1)
|
294 |
-
k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1)
|
295 |
-
v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1)
|
296 |
-
|
297 |
-
x = xops.memory_efficient_attention(
|
298 |
-
q, k, v,
|
299 |
-
p=self.xattn_drop,
|
300 |
-
scale=self.scale if self.logit_scale is None else None,
|
301 |
-
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None
|
302 |
-
)
|
303 |
-
else:
|
304 |
-
# B*H, L, C
|
305 |
-
q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1)
|
306 |
-
k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1)
|
307 |
-
v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1)
|
308 |
-
|
309 |
-
if self.logit_scale is not None:
|
310 |
-
# B*H, N_q, N_k
|
311 |
-
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
312 |
-
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
313 |
-
attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale
|
314 |
-
attn = attn.view(-1, N_q, N_k)
|
315 |
-
else:
|
316 |
-
q = q * self.scale
|
317 |
-
attn = torch.bmm(q, k.transpose(-1, -2))
|
318 |
-
|
319 |
-
if attn_mask is not None:
|
320 |
-
if attn_mask.dtype == torch.bool:
|
321 |
-
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
322 |
-
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
323 |
-
attn_mask = new_attn_mask
|
324 |
-
attn += attn_mask
|
325 |
-
|
326 |
-
attn = attn.softmax(dim=-1)
|
327 |
-
attn = self.attn_drop(attn)
|
328 |
-
|
329 |
-
x = torch.bmm(attn, v)
|
330 |
-
|
331 |
-
if self.head_scale is not None:
|
332 |
-
x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale
|
333 |
-
x = x.view(-1, N_q, C_q)
|
334 |
-
x = x.transpose(0, 1).reshape(N_q, B_q, C_q)
|
335 |
-
x = self.out_proj(x)
|
336 |
-
x = self.out_drop(x)
|
337 |
-
return x
|
338 |
-
|
339 |
-
class CustomResidualAttentionBlock(nn.Module):
|
340 |
-
def __init__(
|
341 |
-
self,
|
342 |
-
d_model: int,
|
343 |
-
n_head: int,
|
344 |
-
mlp_ratio: float = 4.0,
|
345 |
-
ls_init_value: float = None,
|
346 |
-
act_layer: Callable = nn.GELU,
|
347 |
-
norm_layer: Callable = LayerNorm,
|
348 |
-
scale_cosine_attn: bool = False,
|
349 |
-
scale_heads: bool = False,
|
350 |
-
scale_attn: bool = False,
|
351 |
-
scale_fc: bool = False,
|
352 |
-
cross_attn: bool = False,
|
353 |
-
xattn: bool = False,
|
354 |
-
):
|
355 |
-
super().__init__()
|
356 |
-
|
357 |
-
self.ln_1 = norm_layer(d_model)
|
358 |
-
self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1
|
359 |
-
self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1
|
360 |
-
self.attn = CustomAttention(
|
361 |
-
d_model, n_head,
|
362 |
-
qkv_bias=True,
|
363 |
-
attn_drop=0.,
|
364 |
-
proj_drop=0.,
|
365 |
-
scaled_cosine=scale_cosine_attn,
|
366 |
-
scale_heads=scale_heads,
|
367 |
-
xattn=xattn
|
368 |
-
)
|
369 |
-
|
370 |
-
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
|
371 |
-
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
372 |
-
|
373 |
-
self.ln_2 = norm_layer(d_model)
|
374 |
-
mlp_width = int(d_model * mlp_ratio)
|
375 |
-
self.mlp = nn.Sequential(OrderedDict([
|
376 |
-
("c_fc", nn.Linear(d_model, mlp_width)),
|
377 |
-
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
|
378 |
-
("gelu", act_layer()),
|
379 |
-
("c_proj", nn.Linear(mlp_width, d_model))
|
380 |
-
]))
|
381 |
-
|
382 |
-
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
383 |
-
|
384 |
-
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
385 |
-
q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask)))
|
386 |
-
q = q + self.ls_2(self.mlp(self.ln_2(q)))
|
387 |
-
return q
|
388 |
-
|
389 |
-
class CustomTransformer(nn.Module):
|
390 |
-
def __init__(
|
391 |
-
self,
|
392 |
-
width: int,
|
393 |
-
layers: int,
|
394 |
-
heads: int,
|
395 |
-
mlp_ratio: float = 4.0,
|
396 |
-
ls_init_value: float = None,
|
397 |
-
act_layer: Callable = nn.GELU,
|
398 |
-
norm_layer: Callable = LayerNorm,
|
399 |
-
scale_cosine_attn: bool = True,
|
400 |
-
scale_heads: bool = False,
|
401 |
-
scale_attn: bool = False,
|
402 |
-
scale_fc: bool = False,
|
403 |
-
cross_attn: bool = False,
|
404 |
-
xattn: bool = False,
|
405 |
-
):
|
406 |
-
super().__init__()
|
407 |
-
self.width = width
|
408 |
-
self.layers = layers
|
409 |
-
self.grad_checkpointing = False
|
410 |
-
self.xattn = xattn
|
411 |
-
|
412 |
-
self.resblocks = nn.ModuleList([
|
413 |
-
CustomResidualAttentionBlock(
|
414 |
-
width,
|
415 |
-
heads,
|
416 |
-
mlp_ratio,
|
417 |
-
ls_init_value=ls_init_value,
|
418 |
-
act_layer=act_layer,
|
419 |
-
norm_layer=norm_layer,
|
420 |
-
scale_cosine_attn=scale_cosine_attn,
|
421 |
-
scale_heads=scale_heads,
|
422 |
-
scale_attn=scale_attn,
|
423 |
-
scale_fc=scale_fc,
|
424 |
-
cross_attn=cross_attn,
|
425 |
-
xattn=xattn)
|
426 |
-
for _ in range(layers)
|
427 |
-
])
|
428 |
-
|
429 |
-
def get_cast_dtype(self) -> torch.dtype:
|
430 |
-
return self.resblocks[0].mlp.c_fc.weight.dtype
|
431 |
-
|
432 |
-
def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None):
|
433 |
-
if k is None and v is None:
|
434 |
-
k = v = q
|
435 |
-
for r in self.resblocks:
|
436 |
-
if self.grad_checkpointing and not torch.jit.is_scripting():
|
437 |
-
q = checkpoint(r, q, k, v, attn_mask)
|
438 |
-
else:
|
439 |
-
q = r(q, k, v, attn_mask=attn_mask)
|
440 |
-
return q
|
441 |
-
|
442 |
-
|
443 |
-
class ResidualAttentionBlock(nn.Module):
|
444 |
-
def __init__(
|
445 |
-
self,
|
446 |
-
d_model: int,
|
447 |
-
n_head: int,
|
448 |
-
mlp_ratio: float = 4.0,
|
449 |
-
ls_init_value: float = None,
|
450 |
-
act_layer: Callable = nn.GELU,
|
451 |
-
norm_layer: Callable = LayerNorm,
|
452 |
-
xattn: bool = False,
|
453 |
-
):
|
454 |
-
super().__init__()
|
455 |
-
|
456 |
-
self.ln_1 = norm_layer(d_model)
|
457 |
-
if xattn:
|
458 |
-
self.attn = Attention(d_model, n_head, xattn=True)
|
459 |
-
else:
|
460 |
-
self.attn = nn.MultiheadAttention(d_model, n_head)
|
461 |
-
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
462 |
-
|
463 |
-
self.ln_2 = norm_layer(d_model)
|
464 |
-
mlp_width = int(d_model * mlp_ratio)
|
465 |
-
self.mlp = nn.Sequential(OrderedDict([
|
466 |
-
("c_fc", nn.Linear(d_model, mlp_width)),
|
467 |
-
("gelu", act_layer()),
|
468 |
-
("c_proj", nn.Linear(mlp_width, d_model))
|
469 |
-
]))
|
470 |
-
|
471 |
-
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
472 |
-
self.xattn = xattn
|
473 |
-
|
474 |
-
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
475 |
-
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
|
476 |
-
if self.xattn:
|
477 |
-
return self.attn(x, attn_mask=attn_mask)
|
478 |
-
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
479 |
-
|
480 |
-
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
481 |
-
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
|
482 |
-
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
483 |
-
return x
|
484 |
-
|
485 |
-
class Transformer(nn.Module):
|
486 |
-
def __init__(
|
487 |
-
self,
|
488 |
-
width: int,
|
489 |
-
layers: int,
|
490 |
-
heads: int,
|
491 |
-
mlp_ratio: float = 4.0,
|
492 |
-
ls_init_value: float = None,
|
493 |
-
act_layer: Callable = nn.GELU,
|
494 |
-
norm_layer: Callable = LayerNorm,
|
495 |
-
xattn: bool = False,
|
496 |
-
):
|
497 |
-
super().__init__()
|
498 |
-
self.width = width
|
499 |
-
self.layers = layers
|
500 |
-
self.grad_checkpointing = False
|
501 |
-
|
502 |
-
self.resblocks = nn.ModuleList([
|
503 |
-
ResidualAttentionBlock(
|
504 |
-
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn)
|
505 |
-
for _ in range(layers)
|
506 |
-
])
|
507 |
-
|
508 |
-
def get_cast_dtype(self) -> torch.dtype:
|
509 |
-
return self.resblocks[0].mlp.c_fc.weight.dtype
|
510 |
-
|
511 |
-
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
512 |
-
for r in self.resblocks:
|
513 |
-
if self.grad_checkpointing and not torch.jit.is_scripting():
|
514 |
-
x = checkpoint(r, x, attn_mask)
|
515 |
-
else:
|
516 |
-
x = r(x, attn_mask=attn_mask)
|
517 |
-
return x
|
518 |
-
|
519 |
-
|
520 |
-
class VisionTransformer(nn.Module):
|
521 |
-
def __init__(
|
522 |
-
self,
|
523 |
-
image_size: int,
|
524 |
-
patch_size: int,
|
525 |
-
width: int,
|
526 |
-
layers: int,
|
527 |
-
heads: int,
|
528 |
-
mlp_ratio: float,
|
529 |
-
ls_init_value: float = None,
|
530 |
-
patch_dropout: float = 0.,
|
531 |
-
global_average_pool: bool = False,
|
532 |
-
output_dim: int = 512,
|
533 |
-
act_layer: Callable = nn.GELU,
|
534 |
-
norm_layer: Callable = LayerNorm,
|
535 |
-
xattn: bool = False,
|
536 |
-
):
|
537 |
-
super().__init__()
|
538 |
-
self.image_size = to_2tuple(image_size)
|
539 |
-
self.patch_size = to_2tuple(patch_size)
|
540 |
-
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
|
541 |
-
self.output_dim = output_dim
|
542 |
-
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
543 |
-
|
544 |
-
scale = width ** -0.5
|
545 |
-
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
546 |
-
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
547 |
-
|
548 |
-
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
549 |
-
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
550 |
-
self.ln_pre = norm_layer(width)
|
551 |
-
|
552 |
-
self.transformer = Transformer(
|
553 |
-
width,
|
554 |
-
layers,
|
555 |
-
heads,
|
556 |
-
mlp_ratio,
|
557 |
-
ls_init_value=ls_init_value,
|
558 |
-
act_layer=act_layer,
|
559 |
-
norm_layer=norm_layer,
|
560 |
-
xattn=xattn
|
561 |
-
)
|
562 |
-
|
563 |
-
self.global_average_pool = global_average_pool
|
564 |
-
self.ln_post = norm_layer(width)
|
565 |
-
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
566 |
-
|
567 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
568 |
-
for param in self.parameters():
|
569 |
-
param.requires_grad = False
|
570 |
-
|
571 |
-
if unlocked_groups != 0:
|
572 |
-
groups = [
|
573 |
-
[
|
574 |
-
self.conv1,
|
575 |
-
self.class_embedding,
|
576 |
-
self.positional_embedding,
|
577 |
-
self.ln_pre,
|
578 |
-
],
|
579 |
-
*self.transformer.resblocks[:-1],
|
580 |
-
[
|
581 |
-
self.transformer.resblocks[-1],
|
582 |
-
self.ln_post,
|
583 |
-
],
|
584 |
-
self.proj,
|
585 |
-
]
|
586 |
-
|
587 |
-
def _unlock(x):
|
588 |
-
if isinstance(x, Sequence):
|
589 |
-
for g in x:
|
590 |
-
_unlock(g)
|
591 |
-
else:
|
592 |
-
if isinstance(x, torch.nn.Parameter):
|
593 |
-
x.requires_grad = True
|
594 |
-
else:
|
595 |
-
for p in x.parameters():
|
596 |
-
p.requires_grad = True
|
597 |
-
|
598 |
-
_unlock(groups[-unlocked_groups:])
|
599 |
-
|
600 |
-
def get_num_layers(self):
|
601 |
-
return self.transformer.layers
|
602 |
-
|
603 |
-
@torch.jit.ignore
|
604 |
-
def set_grad_checkpointing(self, enable=True):
|
605 |
-
self.transformer.grad_checkpointing = enable
|
606 |
-
|
607 |
-
@torch.jit.ignore
|
608 |
-
def no_weight_decay(self):
|
609 |
-
return {'positional_embedding', 'class_embedding'}
|
610 |
-
|
611 |
-
def forward(self, x: torch.Tensor, return_all_features: bool=False):
|
612 |
-
x = self.conv1(x) # shape = [*, width, grid, grid]
|
613 |
-
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
614 |
-
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
615 |
-
x = torch.cat(
|
616 |
-
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
617 |
-
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
618 |
-
x = x + self.positional_embedding.to(x.dtype)
|
619 |
-
|
620 |
-
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
621 |
-
x = self.patch_dropout(x)
|
622 |
-
x = self.ln_pre(x)
|
623 |
-
|
624 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
625 |
-
x = self.transformer(x)
|
626 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
627 |
-
|
628 |
-
if not return_all_features:
|
629 |
-
if self.global_average_pool:
|
630 |
-
x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1)
|
631 |
-
else:
|
632 |
-
x = x[:, 0]
|
633 |
-
|
634 |
-
x = self.ln_post(x)
|
635 |
-
|
636 |
-
if self.proj is not None:
|
637 |
-
x = x @ self.proj
|
638 |
-
|
639 |
-
return x
|
640 |
-
|
641 |
-
|
642 |
-
class TextTransformer(nn.Module):
|
643 |
-
def __init__(
|
644 |
-
self,
|
645 |
-
context_length: int = 77,
|
646 |
-
vocab_size: int = 49408,
|
647 |
-
width: int = 512,
|
648 |
-
heads: int = 8,
|
649 |
-
layers: int = 12,
|
650 |
-
ls_init_value: float = None,
|
651 |
-
output_dim: int = 512,
|
652 |
-
act_layer: Callable = nn.GELU,
|
653 |
-
norm_layer: Callable = LayerNorm,
|
654 |
-
xattn: bool= False,
|
655 |
-
attn_mask: bool = True
|
656 |
-
):
|
657 |
-
super().__init__()
|
658 |
-
self.context_length = context_length
|
659 |
-
self.vocab_size = vocab_size
|
660 |
-
self.width = width
|
661 |
-
self.output_dim = output_dim
|
662 |
-
|
663 |
-
self.token_embedding = nn.Embedding(vocab_size, width)
|
664 |
-
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
|
665 |
-
self.transformer = Transformer(
|
666 |
-
width=width,
|
667 |
-
layers=layers,
|
668 |
-
heads=heads,
|
669 |
-
ls_init_value=ls_init_value,
|
670 |
-
act_layer=act_layer,
|
671 |
-
norm_layer=norm_layer,
|
672 |
-
xattn=xattn
|
673 |
-
)
|
674 |
-
|
675 |
-
self.xattn = xattn
|
676 |
-
self.ln_final = norm_layer(width)
|
677 |
-
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
678 |
-
|
679 |
-
if attn_mask:
|
680 |
-
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
|
681 |
-
else:
|
682 |
-
self.attn_mask = None
|
683 |
-
|
684 |
-
self.init_parameters()
|
685 |
-
|
686 |
-
def init_parameters(self):
|
687 |
-
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
688 |
-
nn.init.normal_(self.positional_embedding, std=0.01)
|
689 |
-
|
690 |
-
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
691 |
-
attn_std = self.transformer.width ** -0.5
|
692 |
-
fc_std = (2 * self.transformer.width) ** -0.5
|
693 |
-
for block in self.transformer.resblocks:
|
694 |
-
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
695 |
-
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
696 |
-
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
697 |
-
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
698 |
-
|
699 |
-
if self.text_projection is not None:
|
700 |
-
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
701 |
-
|
702 |
-
@torch.jit.ignore
|
703 |
-
def set_grad_checkpointing(self, enable=True):
|
704 |
-
self.transformer.grad_checkpointing = enable
|
705 |
-
|
706 |
-
@torch.jit.ignore
|
707 |
-
def no_weight_decay(self):
|
708 |
-
# return {'positional_embedding', 'token_embedding'}
|
709 |
-
return {'positional_embedding'}
|
710 |
-
|
711 |
-
def get_num_layers(self):
|
712 |
-
return self.transformer.layers
|
713 |
-
|
714 |
-
def build_attention_mask(self):
|
715 |
-
# lazily create causal attention mask, with full attention between the vision tokens
|
716 |
-
# pytorch uses additive attention mask; fill with -inf
|
717 |
-
mask = torch.empty(self.context_length, self.context_length)
|
718 |
-
mask.fill_(float("-inf"))
|
719 |
-
mask.triu_(1) # zero out the lower diagonal
|
720 |
-
return mask
|
721 |
-
|
722 |
-
def forward(self, text, return_all_features: bool=False):
|
723 |
-
cast_dtype = self.transformer.get_cast_dtype()
|
724 |
-
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
725 |
-
|
726 |
-
x = x + self.positional_embedding.to(cast_dtype)
|
727 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
728 |
-
x = self.transformer(x, attn_mask=self.attn_mask)
|
729 |
-
# x = self.transformer(x) # no attention mask is applied
|
730 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
731 |
-
x = self.ln_final(x)
|
732 |
-
|
733 |
-
if not return_all_features:
|
734 |
-
# x.shape = [batch_size, n_ctx, transformer.width]
|
735 |
-
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
736 |
-
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
737 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eva_clip/utils.py
DELETED
@@ -1,326 +0,0 @@
|
|
1 |
-
from itertools import repeat
|
2 |
-
import collections.abc
|
3 |
-
import logging
|
4 |
-
import math
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
import torch
|
8 |
-
from torch import nn as nn
|
9 |
-
from torchvision.ops.misc import FrozenBatchNorm2d
|
10 |
-
import torch.nn.functional as F
|
11 |
-
|
12 |
-
# open CLIP
|
13 |
-
def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
14 |
-
# Rescale the grid of position embeddings when loading from state_dict
|
15 |
-
old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
16 |
-
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
17 |
-
return
|
18 |
-
grid_size = to_2tuple(model.visual.grid_size)
|
19 |
-
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
20 |
-
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
21 |
-
if new_seq_len == old_pos_embed.shape[0]:
|
22 |
-
return
|
23 |
-
|
24 |
-
if extra_tokens:
|
25 |
-
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
26 |
-
else:
|
27 |
-
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
28 |
-
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
29 |
-
|
30 |
-
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
31 |
-
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
32 |
-
pos_emb_img = F.interpolate(
|
33 |
-
pos_emb_img,
|
34 |
-
size=grid_size,
|
35 |
-
mode=interpolation,
|
36 |
-
align_corners=True,
|
37 |
-
)
|
38 |
-
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
39 |
-
if pos_emb_tok is not None:
|
40 |
-
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
41 |
-
else:
|
42 |
-
new_pos_embed = pos_emb_img
|
43 |
-
state_dict['visual.positional_embedding'] = new_pos_embed
|
44 |
-
|
45 |
-
|
46 |
-
def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
47 |
-
# Rescale the grid of position embeddings when loading from state_dict
|
48 |
-
old_pos_embed = state_dict.get('positional_embedding', None)
|
49 |
-
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
50 |
-
return
|
51 |
-
grid_size = to_2tuple(model.visual.grid_size)
|
52 |
-
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
53 |
-
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
54 |
-
if new_seq_len == old_pos_embed.shape[0]:
|
55 |
-
return
|
56 |
-
|
57 |
-
if extra_tokens:
|
58 |
-
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
59 |
-
else:
|
60 |
-
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
61 |
-
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
62 |
-
|
63 |
-
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
64 |
-
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
65 |
-
pos_emb_img = F.interpolate(
|
66 |
-
pos_emb_img,
|
67 |
-
size=grid_size,
|
68 |
-
mode=interpolation,
|
69 |
-
align_corners=True,
|
70 |
-
)
|
71 |
-
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
72 |
-
if pos_emb_tok is not None:
|
73 |
-
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
74 |
-
else:
|
75 |
-
new_pos_embed = pos_emb_img
|
76 |
-
state_dict['positional_embedding'] = new_pos_embed
|
77 |
-
|
78 |
-
def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
79 |
-
all_keys = list(state_dict.keys())
|
80 |
-
# interpolate position embedding
|
81 |
-
if 'visual.pos_embed' in state_dict:
|
82 |
-
pos_embed_checkpoint = state_dict['visual.pos_embed']
|
83 |
-
embedding_size = pos_embed_checkpoint.shape[-1]
|
84 |
-
num_patches = model.visual.patch_embed.num_patches
|
85 |
-
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
86 |
-
# height (== width) for the checkpoint position embedding
|
87 |
-
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
88 |
-
# height (== width) for the new position embedding
|
89 |
-
new_size = int(num_patches ** 0.5)
|
90 |
-
# class_token and dist_token are kept unchanged
|
91 |
-
if orig_size != new_size:
|
92 |
-
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
93 |
-
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
94 |
-
# only the position tokens are interpolated
|
95 |
-
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
96 |
-
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
97 |
-
pos_tokens = torch.nn.functional.interpolate(
|
98 |
-
pos_tokens.float(), size=(new_size, new_size), mode='bicubic', align_corners=False)
|
99 |
-
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
100 |
-
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
101 |
-
state_dict['visual.pos_embed'] = new_pos_embed
|
102 |
-
|
103 |
-
patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
|
104 |
-
patch_size = model.visual.patch_embed.patch_size
|
105 |
-
state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
106 |
-
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
107 |
-
|
108 |
-
|
109 |
-
def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
110 |
-
all_keys = list(state_dict.keys())
|
111 |
-
# interpolate position embedding
|
112 |
-
if 'pos_embed' in state_dict:
|
113 |
-
pos_embed_checkpoint = state_dict['pos_embed']
|
114 |
-
embedding_size = pos_embed_checkpoint.shape[-1]
|
115 |
-
num_patches = model.visual.patch_embed.num_patches
|
116 |
-
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
117 |
-
# height (== width) for the checkpoint position embedding
|
118 |
-
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
119 |
-
# height (== width) for the new position embedding
|
120 |
-
new_size = int(num_patches ** 0.5)
|
121 |
-
# class_token and dist_token are kept unchanged
|
122 |
-
if orig_size != new_size:
|
123 |
-
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
124 |
-
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
125 |
-
# only the position tokens are interpolated
|
126 |
-
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
127 |
-
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
128 |
-
pos_tokens = torch.nn.functional.interpolate(
|
129 |
-
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
130 |
-
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
131 |
-
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
132 |
-
state_dict['pos_embed'] = new_pos_embed
|
133 |
-
|
134 |
-
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
135 |
-
patch_size = model.visual.patch_embed.patch_size
|
136 |
-
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
137 |
-
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
138 |
-
|
139 |
-
|
140 |
-
def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
141 |
-
all_keys = list(state_dict.keys())
|
142 |
-
for key in all_keys:
|
143 |
-
if "relative_position_index" in key:
|
144 |
-
state_dict.pop(key)
|
145 |
-
|
146 |
-
if "relative_position_bias_table" in key:
|
147 |
-
rel_pos_bias = state_dict[key]
|
148 |
-
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
149 |
-
dst_num_pos, _ = model.visual.state_dict()[key].size()
|
150 |
-
dst_patch_shape = model.visual.patch_embed.patch_shape
|
151 |
-
if dst_patch_shape[0] != dst_patch_shape[1]:
|
152 |
-
raise NotImplementedError()
|
153 |
-
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
|
154 |
-
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
|
155 |
-
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
|
156 |
-
if src_size != dst_size:
|
157 |
-
print("Position interpolate for %s from %dx%d to %dx%d" % (
|
158 |
-
key, src_size, src_size, dst_size, dst_size))
|
159 |
-
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
160 |
-
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
161 |
-
|
162 |
-
def geometric_progression(a, r, n):
|
163 |
-
return a * (1.0 - r ** n) / (1.0 - r)
|
164 |
-
|
165 |
-
left, right = 1.01, 1.5
|
166 |
-
while right - left > 1e-6:
|
167 |
-
q = (left + right) / 2.0
|
168 |
-
gp = geometric_progression(1, q, src_size // 2)
|
169 |
-
if gp > dst_size // 2:
|
170 |
-
right = q
|
171 |
-
else:
|
172 |
-
left = q
|
173 |
-
|
174 |
-
# if q > 1.090307:
|
175 |
-
# q = 1.090307
|
176 |
-
|
177 |
-
dis = []
|
178 |
-
cur = 1
|
179 |
-
for i in range(src_size // 2):
|
180 |
-
dis.append(cur)
|
181 |
-
cur += q ** (i + 1)
|
182 |
-
|
183 |
-
r_ids = [-_ for _ in reversed(dis)]
|
184 |
-
|
185 |
-
x = r_ids + [0] + dis
|
186 |
-
y = r_ids + [0] + dis
|
187 |
-
|
188 |
-
t = dst_size // 2.0
|
189 |
-
dx = np.arange(-t, t + 0.1, 1.0)
|
190 |
-
dy = np.arange(-t, t + 0.1, 1.0)
|
191 |
-
|
192 |
-
print("Original positions = %s" % str(x))
|
193 |
-
print("Target positions = %s" % str(dx))
|
194 |
-
|
195 |
-
all_rel_pos_bias = []
|
196 |
-
|
197 |
-
for i in range(num_attn_heads):
|
198 |
-
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
199 |
-
f = F.interpolate.interp2d(x, y, z, kind='cubic')
|
200 |
-
all_rel_pos_bias.append(
|
201 |
-
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
202 |
-
|
203 |
-
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
204 |
-
|
205 |
-
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
206 |
-
state_dict[key] = new_rel_pos_bias
|
207 |
-
|
208 |
-
# interpolate position embedding
|
209 |
-
if 'pos_embed' in state_dict:
|
210 |
-
pos_embed_checkpoint = state_dict['pos_embed']
|
211 |
-
embedding_size = pos_embed_checkpoint.shape[-1]
|
212 |
-
num_patches = model.visual.patch_embed.num_patches
|
213 |
-
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
214 |
-
# height (== width) for the checkpoint position embedding
|
215 |
-
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
216 |
-
# height (== width) for the new position embedding
|
217 |
-
new_size = int(num_patches ** 0.5)
|
218 |
-
# class_token and dist_token are kept unchanged
|
219 |
-
if orig_size != new_size:
|
220 |
-
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
221 |
-
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
222 |
-
# only the position tokens are interpolated
|
223 |
-
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
224 |
-
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
225 |
-
pos_tokens = torch.nn.functional.interpolate(
|
226 |
-
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
227 |
-
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
228 |
-
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
229 |
-
state_dict['pos_embed'] = new_pos_embed
|
230 |
-
|
231 |
-
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
232 |
-
patch_size = model.visual.patch_embed.patch_size
|
233 |
-
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
234 |
-
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
235 |
-
|
236 |
-
|
237 |
-
def freeze_batch_norm_2d(module, module_match={}, name=''):
|
238 |
-
"""
|
239 |
-
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
|
240 |
-
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
|
241 |
-
returned. Otherwise, the module is walked recursively and submodules are converted in place.
|
242 |
-
|
243 |
-
Args:
|
244 |
-
module (torch.nn.Module): Any PyTorch module.
|
245 |
-
module_match (dict): Dictionary of full module names to freeze (all if empty)
|
246 |
-
name (str): Full module name (prefix)
|
247 |
-
|
248 |
-
Returns:
|
249 |
-
torch.nn.Module: Resulting module
|
250 |
-
|
251 |
-
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
|
252 |
-
"""
|
253 |
-
res = module
|
254 |
-
is_match = True
|
255 |
-
if module_match:
|
256 |
-
is_match = name in module_match
|
257 |
-
if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
|
258 |
-
res = FrozenBatchNorm2d(module.num_features)
|
259 |
-
res.num_features = module.num_features
|
260 |
-
res.affine = module.affine
|
261 |
-
if module.affine:
|
262 |
-
res.weight.data = module.weight.data.clone().detach()
|
263 |
-
res.bias.data = module.bias.data.clone().detach()
|
264 |
-
res.running_mean.data = module.running_mean.data
|
265 |
-
res.running_var.data = module.running_var.data
|
266 |
-
res.eps = module.eps
|
267 |
-
else:
|
268 |
-
for child_name, child in module.named_children():
|
269 |
-
full_child_name = '.'.join([name, child_name]) if name else child_name
|
270 |
-
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
|
271 |
-
if new_child is not child:
|
272 |
-
res.add_module(child_name, new_child)
|
273 |
-
return res
|
274 |
-
|
275 |
-
|
276 |
-
# From PyTorch internals
|
277 |
-
def _ntuple(n):
|
278 |
-
def parse(x):
|
279 |
-
if isinstance(x, collections.abc.Iterable):
|
280 |
-
return x
|
281 |
-
return tuple(repeat(x, n))
|
282 |
-
return parse
|
283 |
-
|
284 |
-
|
285 |
-
to_1tuple = _ntuple(1)
|
286 |
-
to_2tuple = _ntuple(2)
|
287 |
-
to_3tuple = _ntuple(3)
|
288 |
-
to_4tuple = _ntuple(4)
|
289 |
-
to_ntuple = lambda n, x: _ntuple(n)(x)
|
290 |
-
|
291 |
-
|
292 |
-
def is_logging(args):
|
293 |
-
def is_global_master(args):
|
294 |
-
return args.rank == 0
|
295 |
-
|
296 |
-
def is_local_master(args):
|
297 |
-
return args.local_rank == 0
|
298 |
-
|
299 |
-
def is_master(args, local=False):
|
300 |
-
return is_local_master(args) if local else is_global_master(args)
|
301 |
-
return is_master
|
302 |
-
|
303 |
-
|
304 |
-
class AllGather(torch.autograd.Function):
|
305 |
-
"""An autograd function that performs allgather on a tensor.
|
306 |
-
Performs all_gather operation on the provided tensors.
|
307 |
-
*** Warning ***: torch.distributed.all_gather has no gradient.
|
308 |
-
"""
|
309 |
-
|
310 |
-
@staticmethod
|
311 |
-
def forward(ctx, tensor, rank, world_size):
|
312 |
-
tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
|
313 |
-
torch.distributed.all_gather(tensors_gather, tensor)
|
314 |
-
ctx.rank = rank
|
315 |
-
ctx.batch_size = tensor.shape[0]
|
316 |
-
return torch.cat(tensors_gather, 0)
|
317 |
-
|
318 |
-
@staticmethod
|
319 |
-
def backward(ctx, grad_output):
|
320 |
-
return (
|
321 |
-
grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
|
322 |
-
None,
|
323 |
-
None
|
324 |
-
)
|
325 |
-
|
326 |
-
allgather = AllGather.apply
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_kangaroo.py
CHANGED
@@ -17,8 +17,6 @@
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
-
"""PyTorch LLaMA model."""
|
21 |
-
|
22 |
import math
|
23 |
from typing import List, Optional, Tuple, Union
|
24 |
|
@@ -26,16 +24,15 @@ import torch
|
|
26 |
import torch.nn.functional as F
|
27 |
import torch.utils.checkpoint
|
28 |
from torch import nn
|
29 |
-
from torch.nn import
|
30 |
|
|
|
31 |
from transformers.activations import ACT2FN
|
32 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
33 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
34 |
from transformers.modeling_outputs import (
|
35 |
BaseModelOutputWithPast,
|
36 |
CausalLMOutputWithPast,
|
37 |
-
QuestionAnsweringModelOutput,
|
38 |
-
SequenceClassifierOutputWithPast,
|
39 |
)
|
40 |
from transformers.modeling_utils import PreTrainedModel
|
41 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
@@ -49,15 +46,14 @@ from transformers.utils import (
|
|
49 |
)
|
50 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
51 |
|
52 |
-
from
|
53 |
from .mm_projector_builder import build_vision_projector
|
|
|
54 |
|
55 |
if is_flash_attn_2_available():
|
56 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
58 |
|
59 |
-
from .data_utils import get_input, add_pred_to_history
|
60 |
-
import transformers
|
61 |
|
62 |
logger = logging.get_logger(__name__)
|
63 |
|
@@ -107,22 +103,6 @@ class LlamaRotaryEmbedding(nn.Module):
|
|
107 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
108 |
# For BC we register cos and sin cached
|
109 |
self.max_seq_len_cached = max_position_embeddings
|
110 |
-
|
111 |
-
#@torch.no_grad()
|
112 |
-
#def forward(self, x, position_ids):
|
113 |
-
# # x: [bs, num_attention_heads, seq_len, head_size]
|
114 |
-
# inv_freq_expanded = self.inv_freq[None, :, None].to(torch.bfloat16).expand(position_ids.shape[0], -1, 1)
|
115 |
-
# position_ids_expanded = position_ids[:, None, :].to(torch.bfloat16)
|
116 |
-
# # Force float32 since bfloat16 loses precision on long contexts
|
117 |
-
# # See https://github.com/huggingface/transformers/pull/29285
|
118 |
-
# device_type = x.device.type
|
119 |
-
# device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
120 |
-
# with torch.autocast(device_type=device_type, enabled=False):
|
121 |
-
# freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
|
122 |
-
# emb = torch.cat((freqs, freqs), dim=-1)
|
123 |
-
# cos = emb.cos()
|
124 |
-
# sin = emb.sin()
|
125 |
-
# return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
126 |
|
127 |
@torch.no_grad()
|
128 |
def forward(self, x, position_ids):
|
@@ -179,7 +159,6 @@ def rotate_half(x):
|
|
179 |
|
180 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
181 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
182 |
-
|
183 |
Args:
|
184 |
q (`torch.Tensor`): The query tensor.
|
185 |
k (`torch.Tensor`): The key tensor.
|
@@ -504,7 +483,6 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
504 |
"""
|
505 |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
506 |
first unpad the input, then computes the attention scores and pad the final attention scores.
|
507 |
-
|
508 |
Args:
|
509 |
query_states (`torch.Tensor`):
|
510 |
Input query states to be passed to Flash Attention API
|
@@ -759,11 +737,9 @@ LLAMA_START_DOCSTRING = r"""
|
|
759 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
760 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
761 |
etc.)
|
762 |
-
|
763 |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
764 |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
765 |
and behavior.
|
766 |
-
|
767 |
Parameters:
|
768 |
config ([`LlamaConfig`]):
|
769 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
@@ -804,50 +780,38 @@ LLAMA_INPUTS_DOCSTRING = r"""
|
|
804 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
805 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
806 |
it.
|
807 |
-
|
808 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
809 |
[`PreTrainedTokenizer.__call__`] for details.
|
810 |
-
|
811 |
[What are input IDs?](../glossary#input-ids)
|
812 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
813 |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
814 |
-
|
815 |
- 1 for tokens that are **not masked**,
|
816 |
- 0 for tokens that are **masked**.
|
817 |
-
|
818 |
[What are attention masks?](../glossary#attention-mask)
|
819 |
-
|
820 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
821 |
[`PreTrainedTokenizer.__call__`] for details.
|
822 |
-
|
823 |
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
824 |
`past_key_values`).
|
825 |
-
|
826 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
827 |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
828 |
information on the default strategy.
|
829 |
-
|
830 |
- 1 indicates the head is **not masked**,
|
831 |
- 0 indicates the head is **masked**.
|
832 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
833 |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
834 |
config.n_positions - 1]`.
|
835 |
-
|
836 |
[What are position IDs?](../glossary#position-ids)
|
837 |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
838 |
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
839 |
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
840 |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
841 |
-
|
842 |
Two formats are allowed:
|
843 |
- a [`~cache_utils.Cache`] instance;
|
844 |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
845 |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
846 |
cache format.
|
847 |
-
|
848 |
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
849 |
legacy cache format will be returned.
|
850 |
-
|
851 |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
852 |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
853 |
of shape `(batch_size, sequence_length)`.
|
@@ -880,7 +844,6 @@ LLAMA_INPUTS_DOCSTRING = r"""
|
|
880 |
class LlamaModel(LlamaPreTrainedModel):
|
881 |
"""
|
882 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
883 |
-
|
884 |
Args:
|
885 |
config: LlamaConfig
|
886 |
"""
|
@@ -1107,13 +1070,10 @@ class KangarooForCausalLM(LlamaPreTrainedModel):
|
|
1107 |
super().__init__(config)
|
1108 |
self.model = LlamaModel(config)
|
1109 |
model_name = "EVA02-CLIP-L-14-448"
|
1110 |
-
pretrained = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-mtcv/liujiajun18/models/models--QuanSun--EVA-CLIP/snapshots/11afd202f2ae80869d6cef18b1ec775e79bd8d12/EVA02_CLIP_L_psz14_s4B.pt"
|
1111 |
self.vocab_size = config.vocab_size
|
1112 |
-
|
1113 |
-
model.text = None
|
1114 |
-
model.logit_scale = None
|
1115 |
-
self.vision_tower = model.visual
|
1116 |
self.mm_projector = build_vision_projector(mm_hidden_size=self.vision_tower.num_features, hidden_size=config.hidden_size, projector_type="mlp2x_gelu")
|
|
|
1117 |
self.vocab_size = config.vocab_size
|
1118 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1119 |
|
@@ -1121,6 +1081,7 @@ class KangarooForCausalLM(LlamaPreTrainedModel):
|
|
1121 |
self.angle = torch.stack([1 / torch.pow(torch.tensor(10000), torch.tensor(2 * (hid_j // 2) / hidden_dim)) for hid_j in range(hidden_dim)])
|
1122 |
|
1123 |
self.patch_shape = self.vision_tower.patch_embed.patch_shape[0]
|
|
|
1124 |
self.adaptive_pooling = torch.nn.Conv3d(in_channels=self.vision_tower.num_features,
|
1125 |
out_channels=self.vision_tower.num_features,
|
1126 |
kernel_size=(2, 2, 2),
|
@@ -1164,10 +1125,6 @@ class KangarooForCausalLM(LlamaPreTrainedModel):
|
|
1164 |
image_features = image_features.permute(0, 4, 1, 2, 3)
|
1165 |
image_features = self.adaptive_pooling(image_features)
|
1166 |
image_features = image_features.permute(0, 2, 3, 4, 1)
|
1167 |
-
#B, T, P, _, __ = image_features.shape
|
1168 |
-
#image_features = image_features.reshape(B, T // 2, 2, P, _, __)
|
1169 |
-
#image_features = image_features.mean(dim=2)
|
1170 |
-
#image_features = image_features.reshape(B, T // 2, P, _, __)
|
1171 |
image_features = image_features.reshape(-1, self.patch_shape*self.patch_shape // 4, image_features.shape[-1])
|
1172 |
|
1173 |
image_features = self.mm_projector(image_features)
|
@@ -1195,20 +1152,14 @@ class KangarooForCausalLM(LlamaPreTrainedModel):
|
|
1195 |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1196 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1197 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1198 |
-
|
1199 |
Returns:
|
1200 |
-
|
1201 |
Example:
|
1202 |
-
|
1203 |
```python
|
1204 |
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1205 |
-
|
1206 |
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1207 |
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1208 |
-
|
1209 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1210 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1211 |
-
|
1212 |
>>> # Generate
|
1213 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1214 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
@@ -1337,6 +1288,7 @@ class KangarooForCausalLM(LlamaPreTrainedModel):
|
|
1337 |
T, C, H, W = video.shape
|
1338 |
video = video.reshape(-1, C, H, W)
|
1339 |
images_features = self.encode_images(video, durations, T)
|
|
|
1340 |
input_embeds = self.model.embed_tokens.weight[inputs]
|
1341 |
encoder_input = self.fuse_tokens_and_images(input_embeds, images_features, inputs)
|
1342 |
encoder_input = encoder_input.permute(1, 0, 2)
|
@@ -1420,13 +1372,12 @@ class KangarooForCausalLM(LlamaPreTrainedModel):
|
|
1420 |
)
|
1421 |
return model_inputs
|
1422 |
|
1423 |
-
|
1424 |
@torch.no_grad()
|
1425 |
def chat(
|
1426 |
self,
|
1427 |
video_path : str,
|
1428 |
query : str,
|
1429 |
-
tokenizer :
|
1430 |
num_segments : int = 64,
|
1431 |
history : str = None,
|
1432 |
system_prompt_id : int = 0,
|
@@ -1456,6 +1407,4 @@ class KangarooForCausalLM(LlamaPreTrainedModel):
|
|
1456 |
reordered_past += (
|
1457 |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1458 |
)
|
1459 |
-
return reordered_past
|
1460 |
-
|
1461 |
-
|
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
|
|
|
|
20 |
import math
|
21 |
from typing import List, Optional, Tuple, Union
|
22 |
|
|
|
24 |
import torch.nn.functional as F
|
25 |
import torch.utils.checkpoint
|
26 |
from torch import nn
|
27 |
+
from torch.nn import CrossEntropyLoss
|
28 |
|
29 |
+
from transformers import PreTrainedTokenizer
|
30 |
from transformers.activations import ACT2FN
|
31 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
32 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
33 |
from transformers.modeling_outputs import (
|
34 |
BaseModelOutputWithPast,
|
35 |
CausalLMOutputWithPast,
|
|
|
|
|
36 |
)
|
37 |
from transformers.modeling_utils import PreTrainedModel
|
38 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
|
|
46 |
)
|
47 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
48 |
|
49 |
+
from .vision_tower_builder import build_vision_tower
|
50 |
from .mm_projector_builder import build_vision_projector
|
51 |
+
from .data_utils import get_input, add_pred_to_history
|
52 |
|
53 |
if is_flash_attn_2_available():
|
54 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
55 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
56 |
|
|
|
|
|
57 |
|
58 |
logger = logging.get_logger(__name__)
|
59 |
|
|
|
103 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
104 |
# For BC we register cos and sin cached
|
105 |
self.max_seq_len_cached = max_position_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
@torch.no_grad()
|
108 |
def forward(self, x, position_ids):
|
|
|
159 |
|
160 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
161 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
|
162 |
Args:
|
163 |
q (`torch.Tensor`): The query tensor.
|
164 |
k (`torch.Tensor`): The key tensor.
|
|
|
483 |
"""
|
484 |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
485 |
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
486 |
Args:
|
487 |
query_states (`torch.Tensor`):
|
488 |
Input query states to be passed to Flash Attention API
|
|
|
737 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
738 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
739 |
etc.)
|
|
|
740 |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
741 |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
742 |
and behavior.
|
|
|
743 |
Parameters:
|
744 |
config ([`LlamaConfig`]):
|
745 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
|
780 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
781 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
782 |
it.
|
|
|
783 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
784 |
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
785 |
[What are input IDs?](../glossary#input-ids)
|
786 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
787 |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
788 |
- 1 for tokens that are **not masked**,
|
789 |
- 0 for tokens that are **masked**.
|
|
|
790 |
[What are attention masks?](../glossary#attention-mask)
|
|
|
791 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
792 |
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
793 |
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
794 |
`past_key_values`).
|
|
|
795 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
796 |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
797 |
information on the default strategy.
|
|
|
798 |
- 1 indicates the head is **not masked**,
|
799 |
- 0 indicates the head is **masked**.
|
800 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
801 |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
802 |
config.n_positions - 1]`.
|
|
|
803 |
[What are position IDs?](../glossary#position-ids)
|
804 |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
805 |
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
806 |
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
807 |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
808 |
Two formats are allowed:
|
809 |
- a [`~cache_utils.Cache`] instance;
|
810 |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
811 |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
812 |
cache format.
|
|
|
813 |
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
814 |
legacy cache format will be returned.
|
|
|
815 |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
816 |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
817 |
of shape `(batch_size, sequence_length)`.
|
|
|
844 |
class LlamaModel(LlamaPreTrainedModel):
|
845 |
"""
|
846 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
|
|
847 |
Args:
|
848 |
config: LlamaConfig
|
849 |
"""
|
|
|
1070 |
super().__init__(config)
|
1071 |
self.model = LlamaModel(config)
|
1072 |
model_name = "EVA02-CLIP-L-14-448"
|
|
|
1073 |
self.vocab_size = config.vocab_size
|
1074 |
+
self.vision_tower = build_vision_tower(model_name)
|
|
|
|
|
|
|
1075 |
self.mm_projector = build_vision_projector(mm_hidden_size=self.vision_tower.num_features, hidden_size=config.hidden_size, projector_type="mlp2x_gelu")
|
1076 |
+
|
1077 |
self.vocab_size = config.vocab_size
|
1078 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1079 |
|
|
|
1081 |
self.angle = torch.stack([1 / torch.pow(torch.tensor(10000), torch.tensor(2 * (hid_j // 2) / hidden_dim)) for hid_j in range(hidden_dim)])
|
1082 |
|
1083 |
self.patch_shape = self.vision_tower.patch_embed.patch_shape[0]
|
1084 |
+
# patchify module
|
1085 |
self.adaptive_pooling = torch.nn.Conv3d(in_channels=self.vision_tower.num_features,
|
1086 |
out_channels=self.vision_tower.num_features,
|
1087 |
kernel_size=(2, 2, 2),
|
|
|
1125 |
image_features = image_features.permute(0, 4, 1, 2, 3)
|
1126 |
image_features = self.adaptive_pooling(image_features)
|
1127 |
image_features = image_features.permute(0, 2, 3, 4, 1)
|
|
|
|
|
|
|
|
|
1128 |
image_features = image_features.reshape(-1, self.patch_shape*self.patch_shape // 4, image_features.shape[-1])
|
1129 |
|
1130 |
image_features = self.mm_projector(image_features)
|
|
|
1152 |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1153 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1154 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
1155 |
Returns:
|
|
|
1156 |
Example:
|
|
|
1157 |
```python
|
1158 |
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
|
|
1159 |
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1160 |
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
|
|
1161 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1162 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
1163 |
>>> # Generate
|
1164 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1165 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
1288 |
T, C, H, W = video.shape
|
1289 |
video = video.reshape(-1, C, H, W)
|
1290 |
images_features = self.encode_images(video, durations, T)
|
1291 |
+
|
1292 |
input_embeds = self.model.embed_tokens.weight[inputs]
|
1293 |
encoder_input = self.fuse_tokens_and_images(input_embeds, images_features, inputs)
|
1294 |
encoder_input = encoder_input.permute(1, 0, 2)
|
|
|
1372 |
)
|
1373 |
return model_inputs
|
1374 |
|
|
|
1375 |
@torch.no_grad()
|
1376 |
def chat(
|
1377 |
self,
|
1378 |
video_path : str,
|
1379 |
query : str,
|
1380 |
+
tokenizer : PreTrainedTokenizer,
|
1381 |
num_segments : int = 64,
|
1382 |
history : str = None,
|
1383 |
system_prompt_id : int = 0,
|
|
|
1407 |
reordered_past += (
|
1408 |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1409 |
)
|
1410 |
+
return reordered_past
|
|
|
|
eva_clip/eva_vit_model.py → vision_tower_builder.py
RENAMED
@@ -1,20 +1,25 @@
|
|
1 |
# --------------------------------------------------------
|
2 |
-
# Adapted from https://github.com/
|
3 |
# --------------------------------------------------------
|
4 |
import math
|
5 |
import os
|
6 |
-
|
|
|
|
|
7 |
import torch
|
8 |
import torch.nn as nn
|
9 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
12 |
except:
|
13 |
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
14 |
|
15 |
-
from .transformer import PatchDropout
|
16 |
-
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
-
|
18 |
if os.getenv('ENV_TYPE') == 'deepspeed':
|
19 |
try:
|
20 |
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
@@ -30,6 +35,59 @@ except ImportError:
|
|
30 |
print("Please 'pip install xformers'")
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
class DropPath(nn.Module):
|
34 |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
35 |
"""
|
@@ -78,6 +136,7 @@ class Mlp(nn.Module):
|
|
78 |
x = self.drop(x)
|
79 |
return x
|
80 |
|
|
|
81 |
class SwiGLU(nn.Module):
|
82 |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
83 |
norm_layer=nn.LayerNorm, subln=False):
|
@@ -103,6 +162,7 @@ class SwiGLU(nn.Module):
|
|
103 |
x = self.drop(x)
|
104 |
return x
|
105 |
|
|
|
106 |
class Attention(nn.Module):
|
107 |
def __init__(
|
108 |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
@@ -364,6 +424,91 @@ class RelativePositionBias(nn.Module):
|
|
364 |
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
365 |
|
366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
class EVAVisionTransformer(nn.Module):
|
368 |
""" Vision Transformer with support for patch or hybrid CNN input stage
|
369 |
"""
|
@@ -383,7 +528,6 @@ class EVAVisionTransformer(nn.Module):
|
|
383 |
num_patches = self.patch_embed.num_patches
|
384 |
|
385 |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
386 |
-
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
387 |
if use_abs_pos_emb:
|
388 |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
389 |
else:
|
@@ -530,3 +674,95 @@ class EVAVisionTransformer(nn.Module):
|
|
530 |
x = self.forward_features(x)
|
531 |
x = self.head(x)
|
532 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# --------------------------------------------------------
|
2 |
+
# Adapted from https://github.com/baaivision/EVA
|
3 |
# --------------------------------------------------------
|
4 |
import math
|
5 |
import os
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
|
9 |
import torch
|
10 |
import torch.nn as nn
|
11 |
import torch.nn.functional as F
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
|
14 |
+
from functools import partial
|
15 |
+
from typing import Optional, Tuple, Union
|
16 |
+
from dataclasses import dataclass
|
17 |
+
|
18 |
try:
|
19 |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
20 |
except:
|
21 |
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
22 |
|
|
|
|
|
|
|
23 |
if os.getenv('ENV_TYPE') == 'deepspeed':
|
24 |
try:
|
25 |
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
|
|
35 |
print("Please 'pip install xformers'")
|
36 |
|
37 |
|
38 |
+
class PatchDropout(nn.Module):
|
39 |
+
"""
|
40 |
+
https://arxiv.org/abs/2212.00794
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, prob, exclude_first_token=True):
|
44 |
+
super().__init__()
|
45 |
+
assert 0 <= prob < 1.
|
46 |
+
self.prob = prob
|
47 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
48 |
+
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
if not self.training or self.prob == 0.:
|
52 |
+
return x
|
53 |
+
|
54 |
+
if self.exclude_first_token:
|
55 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
56 |
+
else:
|
57 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
58 |
+
|
59 |
+
batch = x.size()[0]
|
60 |
+
num_tokens = x.size()[1]
|
61 |
+
|
62 |
+
batch_indices = torch.arange(batch)
|
63 |
+
batch_indices = batch_indices[..., None]
|
64 |
+
|
65 |
+
keep_prob = 1 - self.prob
|
66 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
67 |
+
|
68 |
+
rand = torch.randn(batch, num_tokens)
|
69 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
70 |
+
|
71 |
+
x = x[batch_indices, patch_indices_keep]
|
72 |
+
|
73 |
+
if self.exclude_first_token:
|
74 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
75 |
+
|
76 |
+
if self.training and os.getenv('RoPE') == '1':
|
77 |
+
return x, patch_indices_keep
|
78 |
+
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class LayerNorm(nn.LayerNorm):
|
83 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
84 |
+
|
85 |
+
def forward(self, x: torch.Tensor):
|
86 |
+
orig_type = x.dtype
|
87 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
88 |
+
return x.to(orig_type)
|
89 |
+
|
90 |
+
|
91 |
class DropPath(nn.Module):
|
92 |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
93 |
"""
|
|
|
136 |
x = self.drop(x)
|
137 |
return x
|
138 |
|
139 |
+
|
140 |
class SwiGLU(nn.Module):
|
141 |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
142 |
norm_layer=nn.LayerNorm, subln=False):
|
|
|
162 |
x = self.drop(x)
|
163 |
return x
|
164 |
|
165 |
+
|
166 |
class Attention(nn.Module):
|
167 |
def __init__(
|
168 |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
|
|
424 |
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
425 |
|
426 |
|
427 |
+
def broadcat(tensors, dim = -1):
|
428 |
+
num_tensors = len(tensors)
|
429 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
430 |
+
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
431 |
+
shape_len = list(shape_lens)[0]
|
432 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
433 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
434 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
435 |
+
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
436 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
437 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
438 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
439 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
440 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
441 |
+
return torch.cat(tensors, dim = dim)
|
442 |
+
|
443 |
+
|
444 |
+
def rotate_half(x):
|
445 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
446 |
+
x1, x2 = x.unbind(dim = -1)
|
447 |
+
x = torch.stack((-x2, x1), dim = -1)
|
448 |
+
return rearrange(x, '... d r -> ... (d r)')
|
449 |
+
|
450 |
+
|
451 |
+
class VisionRotaryEmbeddingFast(nn.Module):
|
452 |
+
def __init__(
|
453 |
+
self,
|
454 |
+
dim,
|
455 |
+
pt_seq_len,
|
456 |
+
ft_seq_len=None,
|
457 |
+
custom_freqs = None,
|
458 |
+
freqs_for = 'lang',
|
459 |
+
theta = 10000,
|
460 |
+
max_freq = 10,
|
461 |
+
num_freqs = 1,
|
462 |
+
patch_dropout = 0.
|
463 |
+
):
|
464 |
+
super().__init__()
|
465 |
+
if custom_freqs:
|
466 |
+
freqs = custom_freqs
|
467 |
+
elif freqs_for == 'lang':
|
468 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
469 |
+
elif freqs_for == 'pixel':
|
470 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
471 |
+
elif freqs_for == 'constant':
|
472 |
+
freqs = torch.ones(num_freqs).float()
|
473 |
+
else:
|
474 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
475 |
+
|
476 |
+
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
477 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
478 |
+
|
479 |
+
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
480 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
481 |
+
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
482 |
+
|
483 |
+
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
484 |
+
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
485 |
+
|
486 |
+
self.patch_dropout = patch_dropout
|
487 |
+
|
488 |
+
self.register_buffer("freqs_cos", freqs_cos)
|
489 |
+
self.register_buffer("freqs_sin", freqs_sin)
|
490 |
+
|
491 |
+
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
492 |
+
|
493 |
+
def forward(self, t, patch_indices_keep=None):
|
494 |
+
if patch_indices_keep is not None:
|
495 |
+
batch = t.size()[0]
|
496 |
+
batch_indices = torch.arange(batch)
|
497 |
+
batch_indices = batch_indices[..., None]
|
498 |
+
|
499 |
+
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
500 |
+
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
501 |
+
|
502 |
+
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
503 |
+
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
504 |
+
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
505 |
+
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
506 |
+
|
507 |
+
return t * freqs_cos + rotate_half(t) * freqs_sin
|
508 |
+
|
509 |
+
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
510 |
+
|
511 |
+
|
512 |
class EVAVisionTransformer(nn.Module):
|
513 |
""" Vision Transformer with support for patch or hybrid CNN input stage
|
514 |
"""
|
|
|
528 |
num_patches = self.patch_embed.num_patches
|
529 |
|
530 |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
|
531 |
if use_abs_pos_emb:
|
532 |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
533 |
else:
|
|
|
674 |
x = self.forward_features(x)
|
675 |
x = self.head(x)
|
676 |
return x
|
677 |
+
|
678 |
+
|
679 |
+
@dataclass
|
680 |
+
class CLIPVisionCfg:
|
681 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
682 |
+
width: int = 768
|
683 |
+
head_width: int = 64
|
684 |
+
mlp_ratio: float = 4.0
|
685 |
+
patch_size: int = 16
|
686 |
+
image_size: Union[Tuple[int, int], int] = 224
|
687 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
688 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
689 |
+
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
690 |
+
drop_path_rate: Optional[float] = None # drop path rate
|
691 |
+
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
692 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
693 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
694 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
695 |
+
timm_proj_bias: bool = False # enable bias final projection
|
696 |
+
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
|
697 |
+
qkv_bias: bool = True
|
698 |
+
fusedLN: bool = False
|
699 |
+
xattn: bool = False
|
700 |
+
postnorm: bool = False
|
701 |
+
rope: bool = False
|
702 |
+
pt_hw_seq_len: int = 16 # 224/14
|
703 |
+
intp_freq: bool = False
|
704 |
+
naiveswiglu: bool = False
|
705 |
+
subln: bool = False
|
706 |
+
|
707 |
+
|
708 |
+
def build_vision_tower(
|
709 |
+
model_name: str,
|
710 |
+
precision: str = 'bf16',
|
711 |
+
device: Union[str, torch.device] = 'cpu',
|
712 |
+
):
|
713 |
+
if isinstance(device, str):
|
714 |
+
device = torch.device(device)
|
715 |
+
|
716 |
+
model_cfg = json.load(open(model_name + '.json'))
|
717 |
+
if 'rope' in model_cfg.get('vision_cfg', {}):
|
718 |
+
if model_cfg['vision_cfg']['rope']:
|
719 |
+
os.environ['RoPE'] = "1"
|
720 |
+
else:
|
721 |
+
os.environ['RoPE'] = "0"
|
722 |
+
|
723 |
+
vision_cfg = CLIPVisionCfg(**model_cfg['vision_cfg'])
|
724 |
+
|
725 |
+
if vision_cfg.fusedLN:
|
726 |
+
try:
|
727 |
+
from apex.normalization import FusedLayerNorm
|
728 |
+
except:
|
729 |
+
FusedLayerNorm = LayerNorm
|
730 |
+
print("Please 'pip install apex'")
|
731 |
+
norm_layer = partial(FusedLayerNorm, eps=1e-6)
|
732 |
+
else:
|
733 |
+
norm_layer = partial(LayerNorm, eps=1e-6)
|
734 |
+
|
735 |
+
vision_tower = EVAVisionTransformer(
|
736 |
+
img_size = vision_cfg.image_size,
|
737 |
+
patch_size = vision_cfg.patch_size,
|
738 |
+
num_classes = model_cfg['embed_dim'],
|
739 |
+
use_mean_pooling = vision_cfg.global_average_pool, #False
|
740 |
+
init_values = vision_cfg.ls_init_value,
|
741 |
+
patch_dropout = vision_cfg.patch_dropout,
|
742 |
+
embed_dim = vision_cfg.width,
|
743 |
+
depth = vision_cfg.layers,
|
744 |
+
num_heads = vision_cfg.width // vision_cfg.head_width,
|
745 |
+
mlp_ratio = vision_cfg.mlp_ratio,
|
746 |
+
qkv_bias = vision_cfg.qkv_bias,
|
747 |
+
drop_path_rate = vision_cfg.drop_path_rate,
|
748 |
+
norm_layer = norm_layer,
|
749 |
+
xattn = vision_cfg.xattn,
|
750 |
+
rope = vision_cfg.rope,
|
751 |
+
postnorm = vision_cfg.postnorm,
|
752 |
+
pt_hw_seq_len = vision_cfg.pt_hw_seq_len, # 224/14
|
753 |
+
intp_freq = vision_cfg.intp_freq,
|
754 |
+
naiveswiglu = vision_cfg.naiveswiglu,
|
755 |
+
subln = vision_cfg.subln
|
756 |
+
)
|
757 |
+
|
758 |
+
if "fp16" in precision or "bf16" in precision:
|
759 |
+
logging.info(f'convert precision to {precision}')
|
760 |
+
vision_tower = vision_tower.to(torch.bfloat16) if 'bf16' in precision else vision_tower.to(torch.float16)
|
761 |
+
|
762 |
+
vision_tower.to(device=device)
|
763 |
+
|
764 |
+
# set image / mean metadata from pretrained_cfg if available, or use default
|
765 |
+
vision_tower.image_mean = (0.48145466, 0.4578275, 0.40821073)
|
766 |
+
vision_tower.image_std = (0.26862954, 0.26130258, 0.27577711)
|
767 |
+
|
768 |
+
return vision_tower
|